Hartmut Pecher
University of Göttingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hartmut Pecher.
Mathematische Zeitschrift | 1984
Hartmut Pecher
On etudie loperateur diffusion qui appartient a la paire dequations U tt +Au+f(u)=0 et U tt +Au=0. A represente loperateur -∑ j=1 n ∂ 2 /∂x j 2 +m 2 , m∈R et f(u)=λ|U|ρ −1 u, ou λ∈R, ρ>1
Mathematische Zeitschrift | 1988
Hartmut Pecher
On considere la theorie de la diffusion pour des equations donde semilineaires du type u tt -△u=F(u) a 3 dimensions despace, ou F(u)=λ|u| P-1 u ou F(u)=λ|u| P , λ∈R, p>1
Manuscripta Mathematica | 1979
Hartmut Pecher; Wolf von Wahl
We prove the existence of global classical solutions of the Cauchy-problem for nonlinear Schrödinger equations u′+iAu+f(|u|2)u or u′+Au+if(|u|2)u respectively. We need various growth conditions on the nonlinearity f and some restrictions on the admissible space dimension n.
Mathematische Zeitschrift | 1978
Hartmut Pecher
fiir alle Funktionen ueHarc~H JP mit einer gewissen stetigen Funktion co gegeben ist. Hierbei bezeichnet H kp ffir kelR, l__<p<oe die Sobolevr~iume gebrochener Ordnung (vgl. Def. 1.1). Wesentlich hierbei ist die Tatsache, dab b nicht ganz zu sein braucht. Das Resultat folgt durch Interpolation mit Hilfe der von Peetre eingefiihrten K-Methode (vgl. hierzu etwa [1]) zwischen den sich aus den Sobolevschen EinbettungssStzen ergebenden Absch/itzungen flit die H tblqund die Htbl+lq-Norm von f (u) (Theorem 1.6). Ftir friJhere Resultate in dieser Richtung vgl. [7]. Im zweiten Teil der Arbeit wird dieses Resultat dann dazu verwendet, um das Cauchy-Problem ffir nichtlineare Wellengleichungen der Form
Manuscripta Mathematica | 1977
Hartmut Pecher
This paper deals with the global classical solvability of the Cauchy problem for nonlinear wave equations of higher order of the following form where Δ denotes the Laplacian, ζ a real constant, m a positive integer, and f the nonlinearity. Using results of the first part [6] concerning estimations for the kernel of the associated integral equation a priori estimates for certain LP-norms of the local regular solution are established for higher space dimensions and for a class of nonlinearities satisfying certain growth and positivity conditions. This leads to completely regular solutions by means of the Sobolev embedding theorems.
Manuscripta Mathematica | 1982
Robert T. Glassey; Hartmut Pecher
The Cauchy Problem for the equation utt−Δu+|u|p−1u=0 (x∈ℝ2, t>0, ρ>1) is studied. Smooth Cauchy data is prescribed, and no smallness condition is imposed. For ρ>5, it is shown that the maximum amplitude of such a wave decays at the expected rate t−1/2 as t→∞. For 1+√8<ρ≦5, the maximum amplitude still decays, but at a slower rate. These results are then used to demonstrate the existence of the scattering operator when ρ>ρo, where ρo is the root of the cubic equation ρ3-2ρ2-7ρ-8=0; thus ρo≅4.15.
Manuscripta Mathematica | 1990
Hartmut Pecher
We consider the Cauchy problem for semilinear wave equationsutt−Δu=g(u) in 3+1 dimensions with smooth but possibly large data. Ifg isC2,α and bounded from above everywhere and from below for negative arguments the existence of a global classical solution is shown. If moreoverg is nonpositive and vanishes at least of order 2+∈ at the origin and if the data decay sufficiently rapidly at infinity the scattering operator exists.
Manuscripta Mathematica | 1974
Hartmut Pecher
This note deals with the behavior of global classical solutions of a certain type of nonlinear wave-equations when t goes to infinity. Starting with results of Morawetz-Strauss [2] and of the author [3] about the time-decay rates for the spatial supremum of the soluion we estimate all its Sobolev-norms. Our main tools are estimates of the LP-decay rates for homogeneous wave-equations contained in a paper of von Wahl [5].
Mathematische Zeitschrift | 1976
Hartmut Pecher
Mathematische Zeitschrift | 1974
Hartmut Pecher