Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haruhiko Banno is active.

Publication


Featured researches published by Haruhiko Banno.


Annals of Neurology | 2009

Phase 2 trial of leuprorelin in patients with spinal and bulbar muscular atrophy.

Haruhiko Banno; Masahisa Katsuno; Keisuke Suzuki; Yu Takeuchi; Motoshi Kawashima; Noriaki Suga; Motoko Takamori; Mizuki Ito; Tomohiko Nakamura; Koji Matsuo; Shin-ichi Yamada; Yumiko Oki; Hiroaki Adachi; Makoto Minamiyama; Masahiro Waza; Naoki Atsuta; Hirohisa Watanabe; Yasushi Fujimoto; Tsutomu Nakashima; Fumiaki Tanaka; Manabu Doyu; Gen Sobue

Spinal and bulbar muscular atrophy (SBMA) is a hereditary motor neuron disease caused by the expansion of a polyglutamine tract in the androgen receptor (AR). Animal studies have shown that the pathogenesis of SBMA is dependent on serum testosterone level. This study is aimed at evaluating the efficacy and safety of androgen deprivation by leuprorelin acetate in patients with SBMA.


Lancet Neurology | 2010

Efficacy and safety of leuprorelin in patients with spinal and bulbar muscular atrophy (JASMITT study): a multicentre, randomised, double-blind, placebo-controlled trial

Masahisa Katsuno; Haruhiko Banno; Keisuke Suzuki; Yu Takeuchi; Motoshi Kawashima; Ichiro Yabe; Hidenao Sasaki; Masashi Aoki; Mitsuya Morita; Imaharu Nakano; Kazuaki Kanai; Shoichi Ito; Kinya Ishikawa; Hidehiro Mizusawa; Tomotaka Yamamoto; Shoji Tsuji; Kazuko Hasegawa; Takayoshi Shimohata; Masatoyo Nishizawa; Hiroaki Miyajima; Fumio Kanda; Yasuhiro Watanabe; Kenji Nakashima; Akira Tsujino; Taro Yamashita; Makoto Uchino; Yasushi Fujimoto; Fumiaki Tanaka; Gen Sobue

BACKGROUND Spinal and bulbar muscular atrophy is a hereditary motor neuron disease caused by the expansion of a polyglutamine tract in the androgen receptor. At present there are no treatments for spinal and bulbar muscular atrophy, although leuprorelin suppressed the accumulation of pathogenic androgen receptors in a phase 2 trial. We aimed to assess the efficacy and safety of leuprorelin for spinal and bulbar muscular atrophy. METHODS The Japan SBMA Interventional Trial for TAP-144-SR (JASMITT) was a 48-week, randomised, double-blind, placebo-controlled trial done at 14 hospitals between August, 2006, and March, 2008. Patients with spinal and bulbar muscular atrophy were randomly assigned (1:1) by minimisation to subcutaneous 11.25 mg leuprorelin or identical placebo every 12 weeks. Patients and investigators were masked to treatment allocation. The primary endpoint was pharyngeal barium residue, which indicates incomplete bolus clearance, measured at week 48 by videofluorography. All patients who were randomly assigned and who were assessed with videofluorography at least once were included in the analyses. This study is registered with the JMACCT clinical trials registry, number JMA-IIA00009, and the UMIN clinical trials registry, number UMIN000000465. FINDINGS 204 patients were randomly assigned and 199 started treatment: 100 with leuprorelin and 99 with placebo. At week 48, the pharyngeal barium residue after initial swallowing had changed by -5.1% (SD 21.0) in the leuprorelin group and by 0.2% (18.2) in the placebo group (difference between groups -5.3%; 95% CI -10.8 to 0.3; p=0.063). The mean difference in pharyngeal barium residue after piecemeal deglutition at week 48 was -3.2% (-6.4 to 0.0; p=0.049), but there was no significant difference between the groups after covariate adjustment for the baseline data (-4.1 to 1.6; p=0.392). In a predefined subgroup analysis, leuprorelin treatment was associated with a greater reduction in barium residue after initial swallowing than was placebo in patients with a disease duration less than 10 years (difference between groups -9.8, -17.1 to -2.5; p=0.009). There were no significant differences in the number of drug-related adverse events between groups (57 of 100 in the leuprorelin group and 54 of 99 in the placebo group; p=0.727). INTERPRETATION 48 weeks of treatment with leuprorelin did not show significant effects on swallowing function in patients with spinal and bulbar muscular atrophy, although it was well tolerated. Disease duration might influence the efficacy of leuprorelin and thus further clinical trials with sensitive outcome measures should be done in subpopulations of patients. FUNDING Large Scale Clinical Trial Network Project, Japan and Takeda Pharmaceuticals.


The Journal of Neuroscience | 2006

Reversible disruption of dynactin 1-mediated retrograde axonal transport in polyglutamine-induced motor neuron degeneration

Masahisa Katsuno; Hiroaki Adachi; Makoto Minamiyama; Masahiro Waza; Keisuke Tokui; Haruhiko Banno; Keisuke Suzuki; Yu Onoda; Fumiaki Tanaka; Manabu Doyu; Gen Sobue

Spinal and bulbar muscular atrophy (SBMA) is a hereditary neurodegenerative disease caused by an expansion of a trinucleotide CAG repeat encoding the polyglutamine tract in the androgen receptor (AR) gene. To elucidate the pathogenesis of polyglutamine-mediated motor neuron dysfunction, we investigated histopathological and biological alterations in a transgenic mouse model of SBMA carrying human pathogenic AR. In affected mice, neurofilaments and synaptophysin accumulated at the distal motor axon. A similar intramuscular accumulation of neurofilament was detected in the skeletal muscle of SBMA patients. Fluoro-gold labeling and sciatic nerve ligation demonstrated an impaired retrograde axonal transport in the transgenic mice. The mRNA level of dynactin 1, an axon motor for retrograde transport, was significantly reduced in the SBMA mice resulting from pathogenic AR-induced transcriptional dysregulation. These pathological events were observed before the onset of neurological symptoms, but were reversed by castration, which prevents nuclear accumulation of pathogenic AR. Overexpression of dynactin 1 mitigated neuronal toxicity of the pathogenic AR in a cell culture model of SBMA. These observations indicate that polyglutamine-dependent transcriptional dysregulation of dynactin 1 plays a crucial role in the reversible neuronal dysfunction in the early stage of SBMA.


Experimental Neurology | 2006

Pathogenesis, animal models and therapeutics in spinal and bulbar muscular atrophy (SBMA).

Masahisa Katsuno; Hiroaki Adachi; Masahiro Waza; Haruhiko Banno; Keisuke Suzuki; Fumiaki Tanaka; Manabu Doyu; Gen Sobue

Spinal and bulbar muscular atrophy (SBMA) is a hereditary neurodegenerative disease characterized by slowly progressive muscle weakness and atrophy of bulbar, facial, and limb muscles. The cause of SBMA is expansion of a trinucleotide CAG repeat, which encodes the polyglutamine tract, in the first exon of the androgen receptor (AR) gene. SBMA chiefly occurs in adult males, whereas neurological symptoms are rarely detected in females having mutant AR gene. The cardinal histopathological finding of SBMA is loss of lower motor neurons in the anterior horn of spinal cord as well as in brainstem motor nuclei. Animal models carrying human mutant AR gene recapitulate polyglutamine-mediated motor neuron degeneration, providing clues to the pathogenesis of SBMA. There is increasing evidence that testosterone, the ligand of AR, plays a pivotal role in the pathogenesis of neurodegeneration in SBMA. The striking success of androgen deprivation therapy in SBMA mouse models has been translated into clinical trials. In addition, elucidation of pathophysiology using animal models leads to emergence of candidate drugs to treat this devastating disease: HSP inducer, Hsp90 inhibitor, and histone deacetylase inhibitor. Utilizing biomarkers such as scrotal skin biopsy would improve efficacy of clinical trials to verify the results from animal studies. Advances in basic and clinical researches on SBMA are now paving the way for clinical application of potential therapeutics.


Progress in Neurobiology | 2012

Pathogenesis and therapy of spinal and bulbar muscular atrophy (SBMA)

Masahisa Katsuno; Fumiaki Tanaka; Hiroaki Adachi; Haruhiko Banno; Keisuke Suzuki; Hirohisa Watanabe; Gen Sobue

Spinal and bulbar muscular atrophy (SBMA) is a late-onset motor neuron disease characterized by slowly progressive muscle weakness and atrophy. During the last two decades, basic and clinical research has provided important insights into the disease phenotype and pathophysiology. The cause of SBMA is the expansion of a trinucleotide CAG repeat encoding a polyglutamine tract within the first exon of the androgen receptor (AR) gene. SBMA exclusively affects adult males, whereas females homozygous for the AR mutation do not manifest neurological symptoms. The ligand-dependent nuclear accumulation of the polyglutamine-expanded AR protein is central to the gender-specific pathogenesis of SBMA, although additional steps, e.g., DNA binding, inter-domain interactions, and post-translational modification of AR, modify toxicity. The interactions with co-regulators are another requisite for the toxic properties of the polyglutamine-expanded AR. It is also shown that the polyglutamine-expanded AR induces diverse molecular events, such as transcriptional dysregulation, axonal transport disruption, and mitochondrial dysfunction, which play causative roles in the neurodegeneration in SBMA. The pathogenic AR-induced myopathy also contributes to the non-cell autonomous degeneration of motor neurons. Pre-clinical studies using animal models show that the pathogenic AR-mediated neurodegeneration is suppressed by androgen inactivation, the efficacy of which has been tested in clinical trials. Pharmacological activation of cellular defense machineries, such as molecular chaperones, ubiquitin-proteasome system, and autophagy, also exerts neuroprotective effects in experimental models of SBMA.


The Journal of Neuroscience | 2010

Disrupted Transforming Growth Factor-β Signaling in Spinal and Bulbar Muscular Atrophy

Masahisa Katsuno; Hiroaki Adachi; Makoto Minamiyama; Masahiro Waza; Hideki Doi; Naohide Kondo; Hiroyuki Mizoguchi; Atsumi Nitta; Kiyofumi Yamada; Haruhiko Banno; Keisuke Suzuki; Fumiaki Tanaka; Gen Sobue

Spinal and bulbar muscular atrophy (SBMA) is a late-onset lower motor neuron disease caused by the expansion of a trinucleotide CAG repeat, which encodes a polyglutamine tract in androgen receptor (AR). Although it is commonly held that the pathogenic polyglutamine proteins accumulate in neurons and thereby induce transcriptional dysregulation, the downstream molecular events have remained elusive. Here, we examined whether TGF-β signaling is dysregulated in SBMA. Nuclear translocation of phosphorylated Smad2/3, a key step in TGF-β signaling, is suppressed in the spinal motor neurons of male transgenic mice carrying the mutant human AR. A similar finding was also observed in the motor neurons, but not in Purkinje cells, of SBMA patients. The pathogenic AR, the causative protein of SBMA, inhibits the transcription of TGF-β receptor type II (TβRII) via abnormal interactions with NF-Y and p300/CBP-associated factor. Furthermore, overexpression of TβRII dampens polyglutamine-induced cytotoxicity in a neuroblastoma cell line expressing the pathogenic AR. The present study thus indicates that disruption of TGF-β due to the transcriptional dysregulation of TβRII is associated with polyglutamine-induced motor neuron damage in SBMA.


Annals of Neurology | 2006

Mutant androgen receptor accumulation in spinal and bulbar muscular atrophy scrotal skin: A pathogenic marker

Haruhiko Banno; Hiroaki Adachi; Masahisa Katsuno; Keisuke Suzuki; Naoki Atsuta; Hirohisa Watanabe; Fumiaki Tanaka; Manabu Doyu; Gen Sobue

Spinal and bulbar muscular atrophy (SBMA) is a hereditary motor neuron disease caused by the expansion of a polyglutamine tract in the androgen receptor (AR). The nuclear accumulation of mutant AR is central to the pathogenesis of SBMA. Androgen deprivation with leuprorelin inhibits mutant AR accumulation, resulting in rescue of neuronal dysfunction in a mouse model of SBMA. This study aimed to investigate whether mutant AR accumulation in the scrotal skin is an appropriate biomarker of SBMA.


Current Molecular Medicine | 2011

Transforming Growth Factor-β Signaling in Motor Neuron Diseases

M. Katsuno; Hiroaki Adachi; Haruhiko Banno; Keisuke Suzuki; Fumiaki Tanaka; Gen Sobue

Transforming growth factor β (TGF-β), a pleiotropic cytokine, regulates a diverse range of cellular responses, such as proliferation, differentiation, migration, and apoptosis. The TGF-β1, -β2, and -β3 isoforms are expressed by neurons and glial cells, and their receptors are expressed throughout the central nervous system. Several lines of evidence demonstrate that TGF-β signaling protects neurons from glutamate-mediated excitotoxicity, a putative mechanism underlying the pathogenesis of various neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). Recent studies indicate that the TGF-β-Smad2/3 pathway restores motor function in a mouse model of ALS, and that disruption of TGF-β signaling due to the transcriptional dysregulation of its receptor is associated with polyglutamine-induced motor neuron damage in spinal and bulbar muscular atrophy. Moreover, the TGF-β-Smad2/3 pathway regulates the function of glial cells, although the implication of this regulation in neurodegeneration remains elusive. Conversely, myostatin, a member of the TGF-β superfamily, has gained attention as a potential therapeutic target for neuromuscular disorders because genetic deletion of this factor results in increased muscle volume. Signal transduction by BMP, a member of the TGF-β super family, regulates the function and growth of the neuromuscular junction, while the disruption of this signaling has been reported in animal models of hereditary spastic paraplegia. These findings support the hypothesis that the disruption of TGF-β signaling is an important molecular event in the pathogenesis of motor neuron diseases, and that the modification of this signaling pathway represents a new therapeutic strategy against these devastating disorders.


Muscle & Nerve | 2008

Walking capacity evaluated by the 6-minute walk test in spinal and bulbar muscular atrophy.

Yu Takeuchi; Masahisa Katsuno; Haruhiko Banno; Keisuke Suzuki; Motoshi Kawashima; Naoki Atsuta; Mizuki Ito; Hirohisa Watanabe; Fumiaki Tanaka; Gen Sobue

Spinal and bulbar muscular atrophy (SBMA) is an adult‐onset motor neuron disease caused by a CAG repeat expansion in the androgen receptor gene. Because the progression of SBMA is slow, it is plausible to identify biomarkers that monitor disease course for therapeutic development. To verify whether the 6‐min walk test (6MWT) is a biomarker of SBMA, we performed the 6MWT in 35 genetically confirmed patients and in 29 age‐matched healthy controls. The walk distance covered within 6 min (6MWD) was significantly less in SBMA than it was in controls (323.3 ± 143.9 m and 637.6 ± 94.2 m, respectively; P < 0.001). In test–retest analysis, the intraclass correlation coefficient for the 6MWD was high in SBMA patients (r = 0.982). In a 1‐year follow‐up the 6MWD significantly decreased at a rate of 11.3% per year. Our observations suggest that the 6MWT is a biomarker that can be used to monitor progression of motor impairment in SBMA. Muscle Nerve, 2008


Brain | 2012

Longitudinal changes of outcome measures in spinal and bulbar muscular atrophy

Atsushi Hashizume; Masahisa Katsuno; Haruhiko Banno; Keisuke Suzuki; Noriaki Suga; Tomoo Mano; Naoki Atsuta; Hiroaki Oe; Hirohisa Watanabe; Fumiaki Tanaka; Gen Sobue

Spinal and bulbar muscular atrophy is an adult-onset, hereditary motor neuron disease caused by the expansion of a trinucleotide CAG repeat within the gene encoding the androgen receptor. To date, several agents have been shown to prevent or slow disease progression in animal models of this disease. For the translational research of these agents, it is necessary to perform the detailed analysis of natural history with quantitative outcome measures and to establish sensitive and validated disease-specific endpoints in the clinical trials. To this end, we performed a prospective observation of disease progression over 3 years in 34 genetically confirmed Japanese patients with spinal and bulbar muscular atrophy by using quantitative outcome measures, including functional and blood parameters. The baseline evaluation revealed that CAG repeat length in the androgen receptor gene correlated not only with the age of onset but also with the timing of substantial changes in activity of daily living. Multiple regression analyses indicated that the serum level of creatinine is the most useful blood parameter that reflects the severity of motor dysfunction in spinal and bulbar muscular atrophy. In 3-year prospective analyses, a slow but steady progression was affirmed in most of the outcome measures we examined. In the analyses using random coefficient models that summarize the individual data into a representative line, disease progression was not affected by CAG repeat length or onset age. These models showed large interindividual variation, which was also independent of the differences of CAG repeat size. Analyses using these models also demonstrated that the subtle neurological deficits at an early or preclinical stage were more likely to be detected by objective motor functional tests such as the 6-min walk test and grip power or serum creatinine levels than by functional rating scales, such as the revised amyotrophic lateral sclerosis functional rating scale or modified Norris scale. Categorization of the clinical phenotypes using factor analysis showed that upper limb function is closely related to bulbar function, but not to lower limb function at baseline, whereas the site of onset had no substantial effects on disease progression. These results suggest that patients with spinal and bulbar muscular atrophy show a slow but steady progression of motor dysfunction over time that is independent of CAG repeat length or clinical phenotype, and that objective outcome measures may be used to evaluate disease severity at an early stage of this disease.

Collaboration


Dive into the Haruhiko Banno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fumiaki Tanaka

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge