Haruhiko Koseki
Chiba University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Haruhiko Koseki.
Cell | 2006
Tong Ihn Lee; Richard G. Jenner; Laurie A. Boyer; Matthew G. Guenther; Stuart S. Levine; Roshan M. Kumar; Brett Chevalier; Sarah E. Johnstone; Megan F. Cole; Kyoichi Isono; Haruhiko Koseki; Takuya Fuchikami; Kuniya Abe; Heather L. Murray; Jacob P. Zucker; Bingbing Yuan; George W. Bell; Elizabeth Herbolsheimer; Nancy M. Hannett; Kaiming Sun; Duncan T. Odom; Arie P. Otte; Thomas L. Volkert; David P. Bartel; Douglas A. Melton; David K. Gifford; Rudolf Jaenisch; Richard A. Young
Polycomb group proteins are essential for early development in metazoans, but their contributions to human development are not well understood. We have mapped the Polycomb Repressive Complex 2 (PRC2) subunit SUZ12 across the entire nonrepeat portion of the genome in human embryonic stem (ES) cells. We found that SUZ12 is distributed across large portions of over two hundred genes encoding key developmental regulators. These genes are occupied by nucleosomes trimethylated at histone H3K27, are transcriptionally repressed, and contain some of the most highly conserved noncoding elements in the genome. We found that PRC2 target genes are preferentially activated during ES cell differentiation and that the ES cell regulators OCT4, SOX2, and NANOG cooccupy a significant subset of these genes. These results indicate that PRC2 occupies a special set of developmental genes in ES cells that must be repressed to maintain pluripotency and that are poised for activation during ES cell differentiation.
Nature | 2007
Jafar Sharif; Masahiro Muto; Shin-ichiro Takebayashi; Isao Suetake; Akihiro Iwamatsu; Takaho A. Endo; Jun Shinga; Yoko Mizutani-Koseki; Tetsuro Toyoda; Kunihiro Okamura; Shoji Tajima; Kohzoh Mitsuya; Masaki Okano; Haruhiko Koseki
DNA methyltransferase (cytosine-5) 1 (Dnmt1) is the principal enzyme responsible for maintenance of CpG methylation and is essential for the regulation of gene expression, silencing of parasitic DNA elements, genomic imprinting and embryogenesis. Dnmt1 is needed in S phase to methylate newly replicated CpGs occurring opposite methylated ones on the mother strand of the DNA, which is essential for the epigenetic inheritance of methylation patterns in the genome. Despite an intrinsic affinity of Dnmt1 for such hemi-methylated DNA, the molecular mechanisms that ensure the correct loading of Dnmt1 onto newly replicated DNA in vivo are not understood. The Np95 (also known as Uhrf1 and ICBP90) protein binds methylated CpG through its SET and RING finger-associated (SRA) domain. Here we show that localization of mouse Np95 to replicating heterochromatin is dependent on the presence of hemi-methylated DNA. Np95 forms complexes with Dnmt1 and mediates the loading of Dnmt1 to replicating heterochromatic regions. By using Np95-deficient embryonic stem cells and embryos, we show that Np95 is essential in vivo to maintain global and local DNA methylation and to repress transcription of retrotransposons and imprinted genes. The link between hemi-methylated DNA, Np95 and Dnmt1 thus establishes key steps of the mechanism for epigenetic inheritance of DNA methylation.
PLOS Genetics | 2008
Manching Ku; Richard Koche; Esther Rheinbay; Eric M. Mendenhall; Mitsuhiro Endoh; Tarjei S. Mikkelsen; Aviva Presser; Chad Nusbaum; Xiaohui Xie; Andrew S. Chi; Mazhar Adli; Simon Kasif; Leon M. Ptaszek; Chad A. Cowan; Eric S. Lander; Haruhiko Koseki; Bradley E. Bernstein
In embryonic stem (ES) cells, bivalent chromatin domains with overlapping repressive (H3 lysine 27 tri-methylation) and activating (H3 lysine 4 tri-methylation) histone modifications mark the promoters of more than 2,000 genes. To gain insight into the structure and function of bivalent domains, we mapped key histone modifications and subunits of Polycomb-repressive complexes 1 and 2 (PRC1 and PRC2) genomewide in human and mouse ES cells by chromatin immunoprecipitation, followed by ultra high-throughput sequencing. We find that bivalent domains can be segregated into two classes—the first occupied by both PRC2 and PRC1 (PRC1-positive) and the second specifically bound by PRC2 (PRC2-only). PRC1-positive bivalent domains appear functionally distinct as they more efficiently retain lysine 27 tri-methylation upon differentiation, show stringent conservation of chromatin state, and associate with an overwhelming number of developmental regulator gene promoters. We also used computational genomics to search for sequence determinants of Polycomb binding. This analysis revealed that the genomewide locations of PRC2 and PRC1 can be largely predicted from the locations, sizes, and underlying motif contents of CpG islands. We propose that large CpG islands depleted of activating motifs confer epigenetic memory by recruiting the full repertoire of Polycomb complexes in pluripotent cells.
Nature Cell Biology | 2007
Julie K. Stock; Sara Giadrossi; Miguel Casanova; Emily Brookes; Miguel Vidal; Haruhiko Koseki; Neil Brockdorff; Amanda G. Fisher; Ana Pombo
Changes in phosphorylation of the carboxy-terminal domain (CTD) of RNA polymerase II (RNAP) are associated with transcription initiation, elongation and termination. Sites of active transcription are generally characterized by hyperphosphorylated RNAP, particularly at Ser 2 residues, whereas inactive or poised genes may lack RNAP or may bind Ser 5-phosphorylated RNAP at promoter proximal regions. Recent studies have demonstrated that silent developmental regulator genes have an unusual histone modification profile in ES cells, being simultaneously marked with Polycomb repressor-mediated histone H3K27 methylation, and marks normally associated with gene activity. Contrary to the prevailing view, we show here that this important subset of developmental regulator genes, termed bivalent genes, assemble RNAP complexes phosphorylated on Ser 5 and are transcribed at low levels. We provide evidence that this poised RNAP configuration is enforced by Polycomb Repressor Complex (PRC)-mediated ubiquitination of H2A, as conditional deletion of Ring1A and Ring1B leads to the sequential loss of ubiquitination of H2A, release of poised RNAP, and subsequent gene de-repression. These observations provide an insight into the molecular mechanisms that allow ES cells to self-renew and yet retain the ability to generate multiple lineage outcomes.
The EMBO Journal | 2006
Stefan Schoeftner; Aditya K. Sengupta; Stefan Kubicek; Karl Mechtler; Laura Spahn; Haruhiko Koseki; Thomas Jenuwein; Anton Wutz
In mammals X inactivation is initiated by expression of Xist RNA and involves the recruitment of Polycomb repressive complex 1 (PRC1) and 2 (PRC2), which mediate chromosome‐wide ubiquitination of histone H2A and methylation of histone H3, respectively. Here, we show that PRC1 recruitment by Xist RNA is independent of gene silencing. We find that Eed is required for the recruitment of the canonical PRC1 proteins Mph1 and Mph2 by Xist. However, functional Ring1b is recruited by Xist and mediates ubiquitination of histone H2A in Eed deficient embryonic stem (ES) cells, which lack histone H3 lysine 27 tri‐methylation. Xist expression early in ES cell differentiation establishes a chromosomal memory, which allows efficient H2A ubiquitination in differentiated cells and is independent of silencing and PRC2. Our data show that Xist recruits PRC1 components by both PRC2 dependent and independent modes and in the absence of PRC2 function is sufficient for the establishment of Polycomb‐based memory systems in X inactivation.
Nature Medicine | 2002
Takashi Miki; Masashi Suzuki; Tadao Shibasaki; Hiroko Uemura; Toshiaki Sato; Kaori Yamaguchi; Haruhiko Koseki; Toshihiko Iwanaga; Haruaki Nakaya; Susumu Seino
The inwardly rectifying K+ channel Kir6.1 forms K+ channels by coupling with a sulfonylurea receptor in reconstituted systems, but the physiological roles of Kir6.1-containing K+ channels have not been determined. We report here that mice lacking the gene encoding Kir6.1 (known as Kcnj8) have a high rate of sudden death associated with spontaneous ST elevation followed by atrioventricular block as seen on an electrocardiogram. The K+ channel opener pinacidil did not induce K+ currents in vascular smooth-muscle cells of Kir6.1-null mice, and there was no vasodilation response to pinacidil. The administration of methylergometrine, a vasoconstrictive agent, elicited ST elevation followed by cardiac death in Kir6.1-null mice but not in wild-type mice, indicating a phenotype characterized by hypercontractility of coronary arteries and resembling Prinzmetal (or variant) angina in humans. The Kir6.1-containing K+ channel is critical in the regulation of vascular tonus, especially in the coronary arteries, and its disruption may cause Prinzmetal angina.
Cell | 2014
Neil P. Blackledge; Anca M. Farcas; Takashi Kondo; Hamish W. King; Joanna F. McGouran; Lars L.P. Hanssen; Shinsuke Ito; Sarah Cooper; Kaori Kondo; Tomoyuki Ishikura; Hannah K. Long; Thomas W. Sheahan; Neil Brockdorff; Benedikt M. Kessler; Haruhiko Koseki; Robert J. Klose
Summary Chromatin modifying activities inherent to polycomb repressive complexes PRC1 and PRC2 play an essential role in gene regulation, cellular differentiation, and development. However, the mechanisms by which these complexes recognize their target sites and function together to form repressive chromatin domains remain poorly understood. Recruitment of PRC1 to target sites has been proposed to occur through a hierarchical process, dependent on prior nucleation of PRC2 and placement of H3K27me3. Here, using a de novo targeting assay in mouse embryonic stem cells we unexpectedly discover that PRC1-dependent H2AK119ub1 leads to recruitment of PRC2 and H3K27me3 to effectively initiate a polycomb domain. This activity is restricted to variant PRC1 complexes, and genetic ablation experiments reveal that targeting of the variant PCGF1/PRC1 complex by KDM2B to CpG islands is required for normal polycomb domain formation and mouse development. These observations provide a surprising PRC1-dependent logic for PRC2 occupancy at target sites in vivo.
Nature Genetics | 2008
Mareike Puschendorf; Rémi Terranova; Erwin Boutsma; Xiaohong Mao; Kyoichi Isono; Urszula Brykczynska; Carolin Kolb; Arie P. Otte; Haruhiko Koseki; Stuart H. Orkin; Maarten van Lohuizen; Antoine H. F. M. Peters
In eukaryotes, Suv39h H3K9 trimethyltransferases are required for pericentric heterochromatin formation and function. In early mouse preimplantation embryos, however, paternal pericentric heterochromatin lacks Suv39h-mediated H3K9me3 and downstream marks. Here we demonstrate Ezh2-independent targeting of maternally provided polycomb repressive complex 1 (PRC1) components to paternal heterochromatin. In Suv39h2 maternally deficient zygotes, PRC1 also associates with maternal heterochromatin lacking H3K9me3, thereby revealing hierarchy between repressive pathways. In Rnf2 maternally deficient zygotes, the PRC1 complex is disrupted, and levels of pericentric major satellite transcripts are increased at the paternal but not the maternal genome. We conclude that in early embryos, Suv39h-mediated H3K9me3 constitutes the dominant maternal transgenerational signal for pericentric heterochromatin formation. In absence of this signal, PRC1 functions as the default repressive back-up mechanism. Parental epigenetic asymmetry, also observed along cleavage chromosomes, is resolved by the end of the 8-cell stage—concurrent with blastomere polarization—marking the end of the maternal-to-embryonic transition.
eLife | 2012
Anca M. Farcas; Neil P. Blackledge; Ian Sudbery; Hannah K. Long; Joanna F. McGouran; Nathan R. Rose; Sheena Lee; David Sims; Andrea Cerase; Thomas W. Sheahan; Haruhiko Koseki; Neil Brockdorff; Chris P. Ponting; Benedikt M. Kessler; Robert J. Klose
CpG islands (CGIs) are associated with most mammalian gene promoters. A subset of CGIs act as polycomb response elements (PREs) and are recognized by the polycomb silencing systems to regulate expression of genes involved in early development. How CGIs function mechanistically as nucleation sites for polycomb repressive complexes remains unknown. Here we discover that KDM2B (FBXL10) specifically recognizes non-methylated DNA in CGIs and recruits the polycomb repressive complex 1 (PRC1). This contributes to histone H2A lysine 119 ubiquitylation (H2AK119ub1) and gene repression. Unexpectedly, we also find that CGIs are occupied by low levels of PRC1 throughout the genome, suggesting that the KDM2B-PRC1 complex may sample CGI-associated genes for susceptibility to polycomb-mediated silencing. These observations demonstrate an unexpected and direct link between recognition of CGIs by KDM2B and targeting of the polycomb repressive system. This provides the basis for a new model describing the functionality of CGIs as mammalian PREs. DOI: http://dx.doi.org/10.7554/eLife.00205.001
Development | 2008
Mitsuhiro Endoh; Takaho A. Endo; Tamie Endoh; Yu-ichi Fujimura; Osamu Ohara; Tetsuro Toyoda; Arie P. Otte; Masaki Okano; Neil Brockdorff; Miguel Vidal; Haruhiko Koseki
The Polycomb group (PcG) proteins mediate heritable silencing of developmental regulators in metazoans, participating in one of two distinct multimeric protein complexes, the Polycomb repressive complexes 1 (PRC1) and 2 (PRC2). Although PRC2 has been shown to share target genes with the core transcription network, including Oct3/4, to maintain embryonic stem (ES) cells, it is still unclear whether PcG proteins and the core transcription network are functionally linked. Here, we identify an essential role for the core PRC1 components Ring1A/B in repressing developmental regulators in mouse ES cells and, thereby, in maintaining ES cell identity. A significant proportion of the PRC1 target genes are also repressed by Oct3/4. We demonstrate that engagement of PRC1 at target genes is Oct3/4-dependent, whereas engagement of Oct3/4 is PRC1-independent. Moreover, upon differentiation induced by Gata6 expression, most of the Ring1A/B target genes are derepressed and the binding of Ring1A/B to their target loci is also decreased. Collectively, these results indicate that Ring1A/B-mediated Polycomb silencing functions downstream of the core transcriptional regulatory circuitry to maintain ES cell identity.