Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haruki Kume is active.

Publication


Featured researches published by Haruki Kume.


Nature Genetics | 2013

Integrated molecular analysis of clear-cell renal cell carcinoma

Yusuke Sato; Tetsuichi Yoshizato; Yuichi Shiraishi; Shigekatsu Maekawa; Yusuke Okuno; Takumi Kamura; Teppei Shimamura; Aiko Sato-Otsubo; Genta Nagae; Hiromichi Suzuki; Yasunobu Nagata; Kenichi Yoshida; Ayana Kon; Yutaka Suzuki; Kenichi Chiba; Hiroko Tanaka; Atsushi Niida; Akihiro Fujimoto; Tatsuhiko Tsunoda; Teppei Morikawa; Daichi Maeda; Haruki Kume; Sumio Sugano; Masashi Fukayama; Hiroyuki Aburatani; Masashi Sanada; Satoru Miyano; Yukio Homma; Seishi Ogawa

Clear-cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer and its molecular pathogenesis is incompletely understood. Here we report an integrated molecular study of ccRCC in which ≥100 ccRCC cases were fully analyzed by whole-genome and/or whole-exome and RNA sequencing as well as by array-based gene expression, copy number and/or methylation analyses. We identified a full spectrum of genetic lesions and analyzed gene expression and DNA methylation signatures and determined their impact on tumor behavior. Defective VHL-mediated proteolysis was a common feature of ccRCC, which was caused not only by VHL inactivation but also by new hotspot TCEB1 mutations, which abolished Elongin C–VHL binding, leading to HIF accumulation. Other newly identified pathways and components recurrently mutated in ccRCC included PI3K-AKT-mTOR signaling, the KEAP1-NRF2-CUL3 apparatus, DNA methylation, p53-related pathways and mRNA processing. This integrated molecular analysis unmasked new correlations between DNA methylation, gene mutation and/or gene expression and copy number profiles, enabling the stratification of clinical risks for patients with ccRCC.


Science | 2014

Recurrent somatic mutations underlie corticotropin-independent Cushing’s syndrome

Yusuke Sato; Shigekatsu Maekawa; Ryohei Ishii; Masashi Sanada; Teppei Morikawa; Yuichi Shiraishi; Kenichi Yoshida; Yasunobu Nagata; Aiko Sato-Otsubo; Tetsuichi Yoshizato; Hiromichi Suzuki; Yusuke Shiozawa; Keisuke Kataoka; Ayana Kon; Kosuke Aoki; Kenichi Chiba; Hiroko Tanaka; Haruki Kume; Satoru Miyano; Masashi Fukayama; Osamu Nureki; Yukio Homma; Seishi Ogawa

Cushing’s syndrome is caused by excess cortisol production from the adrenocortical gland. In corticotropin-independent Cushing’s syndrome, the excess cortisol production is primarily attributed to an adrenocortical adenoma, in which the underlying molecular pathogenesis has been poorly understood. We report a hotspot mutation (L206R) in PRKACA, which encodes the catalytic subunit of cyclic adenosine monophosphate (cAMP)–dependent protein kinase (PKA), in more than 50% of cases with adrenocortical adenomas associated with corticotropin-independent Cushing’s syndrome. The L206R PRKACA mutant abolished its binding to the regulatory subunit of PKA (PRKAR1A) that inhibits catalytic activity of PRKACA, leading to constitutive, cAMP-independent PKA activation. These results highlight the major role of cAMP-independent activation of cAMP/PKA signaling by somatic mutations in corticotropin-independent Cushing’s syndrome, providing insights into the diagnosis and therapeutics of this syndrome. Adrenal Cushing’s syndrome involves recurrent mutations in a key signal transduction pathway [Also see Perspective by Kirschner] Candidate Cushings culprit identified Cushings syndrome is a rare condition resulting from the excess production of cortisol. About 15% of Cushings syndrome cases are associated with an adrenocortical tumor. However, the genetic etiology of these adrenocortical tumors is ill defined (see the Perspective by Kirschner). Cao et al. and Sato et al. both performed whole-exome sequencing of tumors from individuals with adrenal Cushings syndrome and compared it with the patients own matched non-tumor DNA and identified recurrent mutations in the protein kinase A catalytic subunit alpha (PRKACA) gene, as well as less frequent mutations in other putative pathological genes. The most common recurrent mutation activated the kinase, which may suggest a potential therapeutic target. Science, this issue p. 913, p. 917; see also p. 804


Clinical Cancer Research | 2007

Identification of Toll-Like Receptor 3 as a Potential Therapeutic Target in Clear Cell Renal Cell Carcinoma

Teppei Morikawa; Akira Sugiyama; Haruki Kume; Satoshi Ota; Takeshi Kashima; Kyoichi Tomita; Tadaichi Kitamura; Tatsuhiko Kodama; Masashi Fukayama; Hiroyuki Aburatani

Purpose: Renal cell carcinoma (RCC) is one of the most drug-refractory cancers. The aim of this study is to discover a novel therapeutic target molecule for clear cell RCC (CCRCC), which accounts for the majority of RCC. Experimental Design: Gene expression profiles of 27 CCRCCs and 9 normal kidney tissues as well as 15 various adult normal tissues were examined by Affymetrix U133 Plus 2.0 arrays. Among the 34 genes specifically up-regulated in CCRCC, overexpression of Toll-like receptor 3 (TLR3) mRNA and its protein was validated by quantitative reverse transcription-PCR, immunoblot, and immunohistochemistry. The effects of TLR3 signaling on in vitro cell growth were examined. Results:TLR3 gene was highly expressed in CCRCC, with only limited expression in a panel of normal tissues. On immunohistochemical analysis using a monoclonal antibody against TLR3, overexpression of TLR3 was observed in 139 of 189 (73.5%) cases of CCRCC as well as in lung metastatic CCRCC (6 of 8), whereas TLR3 expression was entirely absent in chromophobe RCC (0 of 8). Polyinosinic-polycytidilic acid, a TLR3 ligand, exerted a growth-inhibitory effect against RCC cells in a TLR3-dependent manner. Moreover, a combination of polyinosinic-polycytidilic acid and IFNα exerted a synergistic growth-inhibitory effect against Caki-1 RCC cells. Conclusions: This is the first report that TLR3 is overexpressed in CCRCC. These observations suggest that TLR3 pathway may represent a novel therapeutic target in CCRCC.


BJUI | 2011

Maintenance therapy with bacillus Calmette-Guérin Connaught strain clearly prolongs recurrence-free survival following transurethral resection of bladder tumour for non-muscle-invasive bladder cancer.

Shiro Hinotsu; Hideyuki Akaza; Seiji Naito; Seiichiro Ozono; Yoshiteru Sumiyoshi; Sumio Noguchi; Akito Yamaguchi; Satoshi Nagamori; Akito Terai; Yasutomo Nasu; Haruki Kume; Yoshihiko Tomita; Yoshinori Tanaka; Shoji Samma; Hirotsugu Uemura; Hirofumi Koga; Tomoyasu Tsushima

Study Type – Therapy (RCT)


Nucleic Acids Research | 2013

An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data

Yuichi Shiraishi; Yusuke Sato; Kenichi Chiba; Yusuke Okuno; Yasunobu Nagata; Kenichi Yoshida; Norio Shiba; Yasuhide Hayashi; Haruki Kume; Yukio Homma; Masashi Sanada; Seishi Ogawa; Satoru Miyano

Recent advances in high-throughput sequencing technologies have enabled a comprehensive dissection of the cancer genome clarifying a large number of somatic mutations in a wide variety of cancer types. A number of methods have been proposed for mutation calling based on a large amount of sequencing data, which is accomplished in most cases by statistically evaluating the difference in the observed allele frequencies of possible single nucleotide variants between tumours and paired normal samples. However, an accurate detection of mutations remains a challenge under low sequencing depths or tumour contents. To overcome this problem, we propose a novel method, Empirical Bayesian mutation Calling (https://github.com/friend1ws/EBCall), for detecting somatic mutations. Unlike previous methods, the proposed method discriminates somatic mutations from sequencing errors based on an empirical Bayesian framework, where the model parameters are estimated using sequencing data from multiple non-paired normal samples. Using 13 whole-exome sequencing data with 87.5–206.3 mean sequencing depths, we demonstrate that our method not only outperforms several existing methods in the calling of mutations with moderate allele frequencies but also enables accurate calling of mutations with low allele frequencies (≤10%) harboured within a minor tumour subpopulation, thus allowing for the deciphering of fine substructures within a tumour specimen.


Journal of Cardiology | 2012

Idiopathic retroperitoneal fibrosis, inflammatory aortic aneurysm, and inflammatory pericarditis—-Retrospective analysis of 11 case histories

Aiko Sakamoto; Ryozo Nagai; Kan Saito; Yasushi Imai; Masao Takahashi; Yumiko Hosoya; Norifumi Takeda; Kenji Hirano; Kazuhiko Koike; Yutaka Enomoto; Haruki Kume; Yukio Homma; Daichi Maeda; Hideomi Yamada; Masashi Fukayama; Yasunobu Hirata; Nobukazu Ishizaka

Retroperitoneal fibrosis, inflammatory aortic aneurysm, and pericardial and mediastinal fibrosis are characterized by infiltration of immuno-inflammatory cells and deposition of thickened fibrous tissues. Several recent studies suggested that an immunoglobulin-G4 (IgG4)-related immunological mechanism may play a role in these diseases. By searching the clinical database of patients admitted to our department between 2000 and 2010, we summarized the clinical data of 11 patients who were diagnosed to have these disorders. The diagnoses were idiopathic retroperitoneal fibrosis (8 cases), mediastinal and/or pericardial fibrosis (4 cases), inflammatory abdominal aneurysm (2 cases), and inflammatory coronary periarteritis (1 case). Hypertension, diabetes, and dyslipidemia were found in 45%, 36%, and 55%, respectively, in these patients, and they were all either current or former smokers. Two patients with pericardial involvement showed a rushed clinical course, resulting in in-hospital death. Serum levels of IgG were elevated in 67%, and soluble interleukin-2 receptor was elevated in 75%, when measured. Immunohistochemical analysis showed marked infiltration of IgG4-positive plasma cells in the pericardium in patients who died of constrictive pericarditis. Our data support the notion that immune-inflammatory mechanism, which might be IgG4-related sometimes, may play a role in idiopathic retroperitoneal fibrosis, inflammatory aortic aneurysm, and mediastinal/pericardial fibrosis, although clinical course may differ substantially.


Cell Metabolism | 2011

Thiazolidinediones Enhance Sodium-Coupled Bicarbonate Absorption from Renal Proximal Tubules via PPARγ-Dependent Nongenomic Signaling

Yoko Endo; Masashi Suzuki; Hideomi Yamada; Shoko Horita; Motoei Kunimi; Osamu Yamazaki; Ayumi Shirai; Motonobu Nakamura; Naoyuki Iso-O; Yuehong Li; Masumi Hara; Kazuhisa Tsukamoto; Nobuo Moriyama; Akihiko Kudo; Hayato Kawakami; Toshimasa Yamauchi; Naoto Kubota; Takashi Kadowaki; Haruki Kume; Yutaka Enomoto; Yukio Homma; George Seki; Toshiro Fujita

Thiazolidinediones (TZDs) improve insulin resistance by activating a nuclear hormone receptor, peroxisome proliferator-activated receptor γ (PPARγ). However, the use of TZDs is associated with plasma volume expansion through a mechanism that remains to be clarified. Here we showed that TZDs rapidly stimulate sodium-coupled bicarbonate absorption from the renal proximal tubule in vitro and in vivo. TZD-induced transport stimulation is dependent on PPARγ-Src-EGFR-ERK and observed in rat, rabbit and human, but not in mouse proximal tubules where Src-EGFR is constitutively activated. The existence of PPARγ-Src-dependent nongenomic signaling, which requires the ligand-binding ability, but not the transcriptional activity of PPARγ, is confirmed in mouse embryonic fibroblast cells. The enhancement of the association between PPARγ and Src by TZDs supports an indispensable role of Src in this signaling. These results suggest that the PPARγ-dependent nongenomic stimulation of renal proximal transport is also involved in TZD-induced volume expansion.


The Journal of Sexual Medicine | 2012

Adrenomedullin Mediates Adipose Tissue‐Derived Stem Cell‐induced Restoration of Erectile Function in Diabetic Rats

Hiroaki Nishimatsu; Etsu Suzuki; Shintaro Kumano; Akira Nomiya; Miao Liu; Haruki Kume; Yukio Homma

INTRODUCTION Erectile dysfunction (ED) is a major health problem. It is known that diabetic patients are more refractory to common treatments for ED. AIM To explore the better treatment for ED, we examined the effects of adipose-derived stem cells (ASC) on ED using a diabetic rat model. We also analyzed the cytokines produced by ASC and implicated in ASC-induced restoration of erectile function. METHODS Male Wistar rats were injected with streptozotocin (STZ) to induce diabetes. ASC or adenoviruses were injected into the penis 6 weeks after STZ administration. Erectile function, penile histology and protein expression were analyzed 4 weeks after the injection of ASC or adenoviruses. MAIN OUTCOME MEASURES Intracavernous pressure and mean arterial pressure were measured to evaluate erectile function. The morphology of the penis was analyzed by Elastica van Gieson stain and immunohistochemistry. The expression of proteins specific for vascular endothelial cells (VEC) was assessed by Western blot analysis. RESULTS ASC restored erectile function especially when they were cultured in medium containing growth factors for VEC. This restoration was associated with improvement in the histology of the cavernous body, and increased expression of VEC markers such as VE-cadherin and endothelial nitric oxide synthase (eNOS). When the expression of adrenomedullin (AM), a vasoactive peptide originally isolated from human pheochromocytoma tissue, was knocked down, the effect of ASC on ED was significantly diminished. Knockdown of AM was associated with decreased expressions of VE-cadherin and eNOS. Furthermore, overexpression of AM induced by adenovirus infection significantly improved erectile function in these diabetic rats. Overexpression of AM was associated with increased expressions of VE-cadherin and eNOS. CONCLUSIONS These results suggested that ASC have the potentials to restore erectile function and that AM produced by ASC plays a major role in the restoration of erectile function.


Histopathology | 2010

Ribonucleotide reductase M2 subunit is a novel diagnostic marker and a potential therapeutic target in bladder cancer

Teppei Morikawa; Daichi Maeda; Haruki Kume; Yukio Homma; Masashi Fukayama

Morikawa T, Maeda D, Kume H, Homma Y & Fukayama M
(2010) Histopathology57, 885–892


Modern Pathology | 2015

TCEB1-mutated renal cell carcinoma: a distinct genomic and morphological subtype

A. Ari Hakimi; Satish K. Tickoo; Anders Jacobsen; Judy Sarungbam; John P. Sfakianos; Yusuke Sato; Teppei Morikawa; Haruki Kume; Masashi Fukayama; Yukio Homma; Ying Bei Chen; Alexander Sankin; Roy Mano; Jonathan A. Coleman; Paul Russo; Seishi Ogawa; Chris Sander; James J. Hsieh; Victor E. Reuter

Integrated sequencing analysis identified a group of tumors among clear cell renal cell carcinomas characterized by hotspot mutations in TCEB1 (a gene that contributes to the VHL complex to ubiquitinate hypoxia-inducible factor). We analyzed 11 tumors from two distinct cohorts with TCEB1 mutations along with an expanded cohort to assess whether these should be considered an entity distinct from clear cell renal cell carcinoma and clear cell papillary renal cell carcinoma. All tumors were characterized by hotspot mutations in TCEB1 Y79C/S/F/N or A100P. Morphological and immunohistochemical characteristics of the tumors were assessed by two experienced genitourinary pathologists. Clinical and pathological variables, copy number alterations, mutations, and expression signatures were compared with a cohort of TCEB1 wild-type tumors. All TCEB1-mutated tumors were VHL and PBRM1 wild type and contained distinct copy number profiles including loss of heterozygosity of chromosome 8, the location of TCEB1 (8q21.11). All tumors lacked the clear cell renal cell carcinoma signature 3p loss and contained distinct gene expression signatures. None of the clear cell papillary tumors harbored TCEB1 mutations. Pathologically, all TCEB1-mutated tumors shared characteristic features including thick fibromuscular bands transecting the tumor, pure clear cell cytology frequently with cells showing voluminous cytoplasm, and clear cell renal cell carcinoma-like acinar areas associated with infolding tubular and focally papillary architecture. The presence of voluminous cytoplasm, absence of luminal polarization of tumor nuclei, and lack of extensive cup-like distribution of carbonic anhydrase-IX expression distinguish it from clear cell papillary carcinoma. None of the patients developed metastases at last follow-up (median 48 months). In sum, TCEB1-mutated renal cell carcinoma is a distinct entity with recurrent hotspot mutations, specific copy number alterations, pathway activation, and characteristic morphological features. Further clinical follow-up is needed to determine whether these tumors are more indolent compared with the conventional clear cell renal cell carcinoma.

Collaboration


Dive into the Haruki Kume's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yutaka Enomoto

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge