Haruki Mizoguchi
Dartmouth College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Haruki Mizoguchi.
Nature Chemistry | 2014
Haruki Mizoguchi; Hideaki Oikawa; Hiroki Oguri
To access architecturally complex natural products, chemists usually devise a customized synthetic strategy for constructing a single target skeleton. In contrast, biosynthetic assembly lines often employ divergent intramolecular cyclizations of a polyunsaturated common intermediate to produce diverse arrays of scaffolds. With the aim of integrating such biogenetic strategies, we show the development of an artificial divergent assembly line generating unprecedented numbers of scaffold variations of terpenoid indole alkaloids. This approach not only allows practical access to multipotent intermediates, but also enables systematic diversification of skeletal, stereochemical and functional group properties without structural simplification of naturally occurring alkaloids. Three distinct modes of [4+2] cyclizations and two types of redox-mediated annulations provided divergent access to five skeletally distinct scaffolds involving iboga-, aspidosperma-, andranginine- and ngouniensine-type skeletons and a non-natural variant within six to nine steps from tryptamine. The efficiency of our approach was demonstrated by successful total syntheses of (±)-vincadifformine, (±)-andranginine and (-)-catharanthine.
Organic Letters | 2009
Haruki Mizoguchi; Hiroki Oguri; Kiyoshi Tsuge; Hideaki Oikawa
We report the development of a divergent synthetic process entailing four-step access to the elaborate fused skeletons reminiscent of aspidophytines and transtaganolides. A variety of branched precursors were synthesized on the basis of Ugi condensations and installation of diazoimide and subjected to rhodium-catalyzed tandem reactions. Switching of cyclization modes was demonstrated by the choice of the amine building blocks installed at site C.
Journal of the American Chemical Society | 2014
Valer Jeso; Claudio Aquino; Xiayun Cheng; Haruki Mizoguchi; Mika Nakashige; Glenn C. Micalizio
Angularly substituted trans-fused hydroindanes are now accessible by the direct and convergent union of trimethylsilyl (TMS)-alkynes with 4-hydroxy-1,6-enynes by a process that forges three C–C bonds, one C–H bond, and two new stereocenters. The annulation is proposed to proceed by initial formation of a Ti–alkyne complex (with a TMS-alkyne) followed by regioselective alkoxide-directed coupling with the enyne, stereoselective intramolecular cycloaddition, elimination of phenoxide, 1,3-metallotropic shift, and stereoselective protonation of the penultimate allylic organometallic intermediate. Several examples are given to demonstrate the compatibility of this reaction with substrates bearing aromatic and aliphatic substituents, and an empirical model is presented to accompany the stereochemical observations.
Journal of the American Chemical Society | 2015
Haruki Mizoguchi; Glenn C. Micalizio
Bridged bicyclic metallacyclopentenes generated from the [4 + 2] cycloaddition of metallacyclopentadienes with alkenes have been proposed as reactive intermediates in the course of [2 + 2 + 2] annulation reactions. Recently a collection of alkoxide-directed Ti-mediated [2 + 2 + 2] annulation reactions have been discovered for the synthesis of densely functionalized hydrindanes, where the bridged bicyclic metallacyclopentenes from intramolecular [4 + 2] were treated as fleeting intermediates en route to cyclohexadiene products formed by formal cheletropic extrusion of Ti(Oi-Pr)2. In studies aimed at understanding the course of these organometallic cascade reactions it was later discovered that these bridged bicyclic intermediates can be trapped by various elimination processes. Here, we have realized metallacycle-mediated annulation reactions for the assembly of angularly substituted decalins--structural motifs that are ubiquitous in natural products and molecules of pharmaceutical relevance. In addition to defining the basic annulation reaction we have discovered a surprising stability associated with the complex organometallic intermediates generated in the course of this coupling process and document here the ability to control the fate of such species. Ligand-induced cheletropic extrusion of the titanium center delivers cyclohexadiene-containing products, while several distinct protonation events have been identified to realize polycyclic products that contain three new stereocenters (one of which is the angular quaternary center that is a hallmark of alkoxide-directed titanium-mediated [2 + 2 + 2] annulation reactions). Examples of this metallacycle-mediated annulation reaction are provided to demonstrate that a range of stereodefined fused bicyclo[4.4.0]decanes are accessible, including those that contain aromatic and aliphatic substituents, and an empirical model is presented to accompany the observations made.
Beilstein Journal of Organic Chemistry | 2012
Hiroki Oguri; Haruki Mizoguchi; Hideaki Oikawa; Aki Ishiyama; Masato Iwatsuki; Kazuhiko Otoguro; Satoshi Ōmura
Summary By emulating the universal biosynthetic strategy, which employs modular assembly and divergent cyclizations, we have developed a four-step synthetic process to yield a collection of natural-product-inspired scaffolds. Modular assembly of building blocks onto a piperidine-based manifold 6, having a carboxylic acid group, was achieved through Ugi condensation, N-acetoacetylation and diazotransfer, leading to cyclization precursors. The rhodium-catalyzed tandem cyclization and divergent cycloaddition gave rise to tetracyclic and hexacyclic scaffolds by the appropriate choice of dipolarophiles installed at modules 3 and 4. A different piperidine-based manifold 15 bearing an amino group was successfully applied to demonstrate the flexibility and scope of the unified four-step process for the generation of structural diversity in the fused scaffolds. Evaluation of in vitro antitrypanosomal activities of the collections and preliminary structure–activity relationship (SAR) studies were also undertaken.
Organic and Biomolecular Chemistry | 2012
Haruki Mizoguchi; Hideaki Oikawa; Hiroki Oguri
We have developed a unique catalytic protocol for direct gem-vinylation of tryptamine derivatives employing Hg(OTf)(2) as the optimum catalyst. The intermolecular vinylations with a series of aromatic acetylenes proceeded under ambient temperature at the C2 positions of indoles with high functional group tolerance. Based on the mechanistic insights, we further developed the tandem reactions successfully constructing a quaternary center.
Angewandte Chemie | 2016
Haruki Mizoguchi; Glenn C. Micalizio
A convergent coupling reaction is described that enables the stereoselective construction of angularly substituted trans-fused decalins from acyclic precursors. The process builds on our alkoxide-directed titanium-mediated alkyne-alkyne coupling and employs a 1,7-enyne coupling partner. Overall, the reaction is thought to proceed through initial formation of a tetrasusbstituted metallacyclopentadiene, stereoselective intramolecular [4+2] cycloaddition, elimination, isomerization, and regio- and stereoselective protonation. Distinct from our early studies directed at the synthesis of trans-fused hydrindanes, the current annulative coupling reveals an important effect of TMSCl in controlling the final protonation-the event that establishes the stereochemistry of the ring fusion.
Bioorganic & Medicinal Chemistry | 2017
Ryo Watanabe; Haruki Mizoguchi; Hideaki Oikawa; Hirofumi Ohashi; Koichi Watashi; Hiroki Oguri
Densely functionalized tetrahydropyridines were stereoselectively synthesized from 1,6-dihydropyridines. Exploiting a carbonyl group installed at the C3 position of the 1,6-dihydropyridine system, we devised a strategy for cyanomethylation at C2/C6 and subsequent divergent installation of an allyl group at C3/C5 in a highly regio- and stereo-controlled manner. This versatile protocol for programmable functionalization of the 1,6-dihydropyridine system allows the divergent and streamlined synthesis of multiply-substituted tetrahydropyridines as an important class of biologically and medicinally relevant scaffolds. Two of the N-heterocyclic compounds bearing an alkyl nitrile group showed anti-hepatitis C virus (HCV) activity.
Organic Letters | 2018
Karunakar Reddy Bonepally; Takahisa Hiruma; Haruki Mizoguchi; Kyohei Ochiai; Shun Suzuki; Hideaki Oikawa; Aki Ishiyama; Rei Hokari; Masato Iwatsuki; Kazuhiko Otoguro; Satoshi O̅mura; Hiroki Oguri
Development of designer natural product variants, 6-aza-artemisinins, enabled us to achieve structural modification of the hitherto unexplored cyclohexane moiety of artemisinin and concise de novo synthesis of the tetracyclic scaffold in just four steps from the modular assembly of three simple building blocks. This expeditious catalytic asymmetric synthetic approach generated lead candidates exhibiting superior in vivo antimalarial activities to artemisinin.
Organic and Biomolecular Chemistry | 2015
Haruki Mizoguchi; Ryo Watanabe; Shintaro Minami; Hideaki Oikawa; Hiroki Oguri