Harumi Ikei
Chiba University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harumi Ikei.
Evidence-based Complementary and Alternative Medicine | 2014
Juyoung Lee; Yuko Tsunetsugu; Norimasa Takayama; Bum-Jin Park; Qing Li; Chorong Song; Misako Komatsu; Harumi Ikei; Liisa Tyrväinen; Takahide Kagawa; Yoshifumi Miyazaki
Background. Despite increasing attention toward forest therapy as an alternative medicine, very little evidence continues to be available on its therapeutic effects. Therefore, this study was focused on elucidating the health benefits of forest walking on cardiovascular reactivity. Methods. Within-group comparisons were used to examine the cardiovascular responses to walking in forest and urban environments. Forty-eight young adult males participated in the two-day field research. Changes in heart rate variability, heart rate, and blood pressure were measured to understand cardiovascular reactivity. Four different questionnaires were used to investigate the changes in psychological states after walking activities. Results. Forest walking significantly increased the values of ln(HF) and significantly decreased the values of ln(LF/HF) compared with the urban walking. Heart rate during forest walking was significantly lower than that in the control. Questionnaire results showed that negative mood states and anxiety levels decreased significantly by forest walking compared with urban walking. Conclusion. Walking in the forest environment may promote cardiovascular relaxation by facilitating the parasympathetic nervous system and by suppressing the sympathetic nervous system. In addition, forest therapy may be effective for reducing negative psychological symptoms.
Journal of Physiological Anthropology | 2013
Chorong Song; Dawou Joung; Harumi Ikei; Miho Igarashi; Mariko Aga; Bum-Jin Park; Masayuki Miwa; Michiko Takagaki; Yoshifumi Miyazaki
BackgroundInteraction with nature has a relaxing effect on humans. Increasing attention has been focused on the therapeutic effects of urban green space; however, there is a lack of evidence-based field research. This study provided scientific evidence supporting the physiological and psychological effects of walking on young males in urban parks in winter.FindingsSubjects (13 males aged 22.5 ± 3.1 years) were instructed to walk predetermined 15-minute courses in an urban park (test) and in the city area (control). Heart rate and heart rate variability (HRV) were measured to assess physiological responses. The semantic differential (SD) method, Profile of Mood States (POMS), and State-Trait Anxiety Inventory (STAI) were used to determine psychological responses.Heart rate was significantly lower and the natural logarithm of the high frequency component of HRV was significantly higher when walking through the urban park than through the city area. The results of three questionnaires indicated that walking in the urban park improved mood and decreased negative feelings and anxiety.ConclusionsPhysiological and psychological data from this field experiment provide important scientific evidence regarding the health benefits of walking in an urban park. The results support the premise that walking in an urban park has relaxing effects even in winter.
International Journal of Environmental Research and Public Health | 2016
Chorong Song; Harumi Ikei; Yoshifumi Miyazaki
Humans have evolved into what they are today after the passage of 6–7 million years. If we define the beginning of urbanization as the rise of the industrial revolution, less than 0.01% of our species’ history has been spent in modern surroundings. Humans have spent over 99.99% of their time living in the natural environment. The gap between the natural setting, for which our physiological functions are adapted, and the highly urbanized and artificial setting that we inhabit is a contributing cause of the “stress state” in modern people. In recent years, scientific evidence supporting the physiological effects of relaxation caused by natural stimuli has accumulated. This review aimed to objectively demonstrate the physiological effects of nature therapy. We have reviewed research in Japan related to the following: (1) the physiological effects of nature therapy, including those of forests, urban green space, plants, and wooden material and (2) the analyses of individual differences that arise therein. The search was conducted in the PubMed database using various keywords. We applied our inclusion/exclusion criteria and reviewed 52 articles. Scientific data assessing physiological indicators, such as brain activity, autonomic nervous activity, endocrine activity, and immune activity, are accumulating from field and laboratory experiments. We believe that nature therapy will play an increasingly important role in preventive medicine in the future.
International Journal of Environmental Research and Public Health | 2015
Hiroko Ochiai; Harumi Ikei; Chorong Song; Maiko Kobayashi; Ako Takamatsu; Takashi Miura; Takahide Kagawa; Qing Li; Shigeyoshi Kumeda; Michiko Imai; Yoshifumi Miyazaki
Time spent walking and relaxing in a forest environment (“forest bathing” or “forest therapy”) has well demonstrated anti-stress effects in healthy adults, but benefits for ill or at-risk populations have not been reported. The present study assessed the physiological and psychological effects of forest therapy (relaxation and stress management activity in the forest) on middle-aged males with high-normal blood pressure. Blood pressure and several physiological and psychological indices of stress were measured the day before and approximately 2 h following forest therapy. Both pre- and post-treatment measures were conducted at the same time of day to avoid circadian influences. Systolic and diastolic blood pressure (BP), urinary adrenaline, and serum cortisol were all significantly lower than baseline following forest therapy (p < 0.05). Subjects reported feeling significantly more “relaxed” and “natural” according to the Semantic Differential (SD) method. Profile of Mood State (POMS) negative mood subscale scores for “tension-anxiety,” “confusion,” and “anger-hostility,” as well as the Total Mood Disturbance (TMD) score were significantly lower following forest therapy. These results highlight that forest is a promising treatment strategy to reduce blood pressure into the optimal range and possibly prevent progression to clinical hypertension in middle-aged males with high-normal blood pressure.
International Journal of Environmental Research and Public Health | 2015
Chorong Song; Harumi Ikei; Maiko Kobayashi; Takashi Miura; Masao Taue; Takahide Kagawa; Qing Li; Shigeyoshi Kumeda; Michiko Imai; Yoshifumi Miyazaki
There has been increasing attention on the therapeutic effects of the forest environment. However, evidence-based research that clarifies the physiological effects of the forest environment on hypertensive individuals is lacking. This study provides scientific evidence suggesting that a brief forest walk affects autonomic nervous system activity in middle-aged hypertensive individuals. Twenty participants (58.0 ± 10.6 years) were instructed to walk predetermined courses in forest and urban environments (as control). Course length (17-min walk), walking speed, and energy expenditure were equal between the forest and urban environments to clarify the effects of each environment. Heart rate variability (HRV) and heart rate were used to quantify physiological responses. The modified semantic differential method and Profile of Mood States were used to determine psychological responses. The natural logarithm of the high-frequency component of HRV was significantly higher and heart rate was significantly lower when participants walked in the forest than when they walked in the urban environment. The questionnaire results indicated that, compared with the urban environment, walking in the forest increased “comfortable”, “relaxed”, “natural” and “vigorous” feelings and decreased “tension-anxiety,” “depression,” “anxiety-hostility,” “fatigue” and “confusion”. A brief walk in the forest elicited physiological and psychological relaxation effects on middle-aged hypertensive individuals.
International Journal of Environmental Research and Public Health | 2015
Chorong Song; Harumi Ikei; Miho Igarashi; Michiko Takagaki; Yoshifumi Miyazaki
In recent times, attention has been focused on the role of urban green spaces in promoting human health and well-being. However, there is a lack of evidence-based research on the physiological effects of walking in urban green areas. This study aimed to clarify the physiological and psychological effects of walking in urban parks during fall. Twenty-three males (mean age 22.3 ± 1.2 years) were instructed to walk predetermined 15-min courses in an urban park and in a nearby city area (control). Heart rate and heart rate variability were measured to assess physiological responses, and the semantic differential method, Profile of Mood States, and State-Trait Anxiety Inventory were used to measure psychological responses. We observed that walking in an urban park resulted in a significantly lower heart rate, higher parasympathetic nerve activity, and lower sympathetic nerve activity than walking through the city area. In subjective evaluations, participants were more “comfortable,” “natural,” “relaxed,” and “vigorous” after a walk in the urban park. Furthermore, they exhibited significantly lower levels of negative emotions and anxiety. These findings provide scientific evidence for the physiological and psychological relaxation effects of walking in urban parks during fall.
International Journal of Environmental Research and Public Health | 2015
Hiroko Ochiai; Harumi Ikei; Chorong Song; Maiko Kobayashi; Takashi Miura; Takahide Kagawa; Qing Li; Shigeyoshi Kumeda; Michiko Imai; Yoshifumi Miyazaki
The natural environment is increasingly recognized as an effective counter to urban stress, and “Forest Therapy” has recently attracted attention as a relaxation and stress management activity with demonstrated clinical efficacy. The present study assessed the physiological and psychological effects of a forest therapy program on middle-aged females. Seventeen Japanese females (62.2 ± 9.4 years; mean ± standard deviation) participated in this experiment. Pulse rate, salivary cortisol level, and psychological indices were measured on the day before forest therapy and on the forest therapy day. Pulse rate and salivary cortisol were significantly lower than baseline following forest therapy, indicating that subjects were in a physiologically relaxed state. Subjects reported feeling significantly more “comfortable,” “relaxed,” and “natural” according to the semantic differential (SD) method. The Profile of Mood State (POMS) negative mood subscale score for “tension–anxiety” was significantly lower, while that for “vigor” was significantly higher following forest therapy. Our study revealed that forest therapy elicited a significant (1) decrease in pulse rate, (2) decrease in salivary cortisol levels, (3) increase in positive feelings, and (4) decrease in negative feelings. In conclusion, there are substantial physiological and psychological benefits of forest therapy on middle-aged females.
International Journal of Environmental Research and Public Health | 2015
Miho Igarashi; Mariko Aga; Harumi Ikei; Takafumi Namekawa; Yoshifumi Miyazaki
The relaxation effects of gardening have attracted attention; however, very few studies have researched its physiological effects on humans. This study aimed to clarify the physiological and psychological effects on high school students of viewing real and artificial pansies. Forty high school students (male: 19, female: 21) at Chiba Prefectural Kashiwanoha Senior High School, Japan, participated in this experiment. The subjects were presented with a visual stimulation of fresh yellow pansies (Viola x wittrockiana “Nature Clear Lemon”) in a planter for 3 min. Artificial yellow pansies in a planter were used as the control. Heart rate variability was used as a physiological measurement and the modified semantic differential method was used for subjective evaluation. Compared with artificial pansies, visual stimulation with real flowers resulted in a significant decrease in the ratio of low- to high-frequency heart rate variability component, which reflects sympathetic nerve activity. In contrast, high frequency, which reflects parasympathetic nerve activity, showed no significant difference. With regard to the psychological indices, viewing real flowers resulted in “comfortable”, “relaxed”, and “natural” feelings. The findings indicate that visual stimulation with real pansies induced physiological and psychological relaxation effects in high school students.
Journal of Physiological Anthropology | 2013
Chorong Song; Harumi Ikei; Juyoung Lee; Bum-Jin Park; Takahide Kagawa; Yoshifumi Miyazaki
BackgroundIn recent years, the physiological relaxation effects of natural environments have been widely exploited, and although individual differences in the effects of forest therapy are known, assessment methods have not been clearly established. This study used a classification based on Type A and Type B behavior patterns to explain individual differences in physiological responses to forest environments.MethodsWe performed physiological experiments in 44 forest and urban (controls) areas. In total, 485 male university students (age, 21.8 ± 1.6 years) participated in the study. The subjects were asked to visit forest or urban environments randomly and observe each landscape for 15 min. The subjects’ pulse rates and blood pressures were tested to evaluate their physiological responses. The Kwansei Gakuin daily life questionnaire was used to identify Type A and Type B behavior patterns in subjects.ResultsThe pulse rate was significantly lower in the Type B group after exposure to forest areas than after exposure to urban areas, whereas no significant difference was observed in the Type A group. In addition, the pulse rate was significantly lower in the low scoring subjects in the Type B group, which was consistent with changes in their diastolic blood pressure.ConclusionsThese results suggest that individual differences in pulse rate and blood pressure in response to forest environments can be explained by Type A and Type B behavior patterns.
Evidence-based Complementary and Alternative Medicine | 2015
Hiromitsu Kobayashi; Chorong Song; Harumi Ikei; Takahide Kagawa; Yoshifumi Miyazaki
Autonomic responses to urban and forest environments were studied in 625 young male subjects. The experimental sites were 57 forests and 57 urban areas across Japan. The subjects viewed the landscape (forest or urban environment) for a period of 15 min while sitting on a chair. During this period, heart rate variability (HRV) was monitored continuously. The results were presented as histograms and analyzed with special reference to individual variations. Approximately 80% of the subjects showed an increase in the parasympathetic indicator of HRV (lnHF), whereas the remaining subjects showed a decrease in the parasympathetic activity. Similarly, 64.0% of the subjects exhibited decreases in the sympathetic indicator of HRV (ln[LF/HF]), whereas the remaining subjects showed opposite responses. Analysis of the distribution of HRV indices (lnHF and ln[LF/HF]) demonstrated the effect of forest environments on autonomic activity more specifically than the conventional analysis based on the difference in mean values.