Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hashem Etayash is active.

Publication


Featured researches published by Hashem Etayash.


Analytical Chemistry | 2014

Impedimetric detection of pathogenic Gram-positive bacteria using an antimicrobial peptide from class IIa bacteriocins.

Hashem Etayash; Keren Jiang; Thomas Thundat; Kamaljit Kaur

Real-time, label-free detection of Gram-positive bacteria with high selectivity and sensitivity is demonstrated using an interdigitated impedimetric array functionalized with naturally produced antimicrobial peptide from class IIa bacteriocins. The antimicrobial peptide, leucocin A, was chemically synthesized and covalently immobilized on interdigitated gold microelectrodes via the interaction between the C-terminal carboxylic acid of the peptide and free amines of a preattached thiolated linker. Exposing the peptide sensor to various concentrations of Gram-positive bacteria generated reproducible impedance spectra that detected peptide-bacteria interactions at a concentration of 1 cell/μL. The peptide sensor also selectively detected Listeria monocytogenes from other Gram-positive strains at a concentration of 10(3) cfu mL(-1). The study highlights that short peptide ligands from bacteriocin class offer high selectivity in bacterial detection and can be used in developing a robust, portable biosensor device to efficiently detect pathogenic Gram-positive bacteria in food samples.


Scientific Reports | 2015

Real-time Detection of Breast Cancer Cells Using Peptide-functionalized Microcantilever Arrays.

Hashem Etayash; Keren Jiang; Sarfuddin Azmi; Thomas Thundat; Kamaljit Kaur

Ligand-directed targeting and capturing of cancer cells is a new approach for detecting circulating tumor cells (CTCs). Ligands such as antibodies have been successfully used for capturing cancer cells and an antibody based system (CellSearch®) is currently used clinically to enumerate CTCs. Here we report the use of a peptide moiety in conjunction with a microcantilever array system to selectively detect CTCs resulting from cancer, specifically breast cancer. A sensing microcantilever, functionalized with a breast cancer specific peptide 18-4 (WxEAAYQrFL), showed significant deflection on cancer cell (MCF7 and MDA-MB-231) binding compared to when exposed to noncancerous (MCF10A and HUVEC) cells. The peptide-functionalized microcantilever allowed efficient capture and detection of cancer cells in MCF7 spiked human blood samples emulating CTCs in human blood. A detection limit of 50–100 cancer cells mL−1 from blood samples was achieved with a capture yield of 80% from spiked whole blood samples. The results emphasize the potential of peptide 18-4 as a novel peptide for capturing and detecting cancer cells in conjunction with nanomechanical cantilever platform. The reported peptide-based cantilever platform represents a new analytical approach that can lead to an alternative to the various detection platforms and can be leveraged to further study CTCs.


Nature Communications | 2016

Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes

Hashem Etayash; M. F. Khan; Kamaljit Kaur; Thomas Thundat

In the fight against drug-resistant bacteria, accurate and high-throughput detection is essential. Here, a bimaterial microcantilever with an embedded microfluidic channel with internal surfaces chemically or physically functionalized with receptors selectively captures the bacteria passing through the channel. Bacterial adsorption inside the cantilever results in changes in the resonance frequency (mass) and cantilever deflection (adsorption stress). The excitation of trapped bacteria using infrared radiation (IR) causes the cantilever to deflect in proportion to the infrared absorption of the bacteria, providing a nanomechanical infrared spectrum for selective identification. We demonstrate the in situ detection and discrimination of Listeria monocytogenes at a concentration of single cell per μl. Trapped Escherichia coli in the microchannel shows a distinct nanomechanical response when exposed to antibiotics. This approach, which combines enrichment with three different modes of detection, can serve as a platform for the development of a portable, high-throughput device for use in the real-time detection of bacteria and their response to antibiotics.


ACS Applied Materials & Interfaces | 2014

Surface-Conjugated Antimicrobial Peptide Leucocin A Displays High Binding to Pathogenic Gram-Positive Bacteria

Hashem Etayash; Lana Norman; Thomas Thundat; Michael E. Stiles; Kamaljit Kaur

Leucocin A, a representative class IIa bacteriocin, is a ribosomally synthesized antimicrobial peptide (AMP) that displays potent activity against specific gram-positive bacteria. The antibacterial activity of such peptides is preceded by the binding event that can be utilized for studying specific peptide-bacteria interactions. In this study, 37-residue Leucocin A (LeuA) was synthesized using solid-phase peptide synthesis and covalently immobilized on gold substrates from either the N- or C-terminal. Both the peptide monolayers on gold substrates were incubated separately with five strains of gram-positive bacteria and displayed differential binding to different strains with highest binding to pathogenic Listeria monocytogenes . The C-terminally immobilized LeuA showed higher bacterial binding compared to the N-terminally attached LeuA. The full length immobilized LeuA (37-residue) was active as well as displayed higher bacterial binding (73 ± 6 bacteria/100 μm(2)) compared to 24-residue inactive LeuA fragment (40 ± 8 bacteria/100 μm(2)) from the C-terminal region. The high and specific bacterial binding ability of LeuA functionalized surfaces support the potential use of class IIa bacteriocins in antimicrobial peptide-based diagnostic platforms.


Langmuir | 2013

Peptide-Bacteria Interactions using Engineered Surface-Immobilized Peptides from Class IIa Bacteriocins

Hashem Etayash; Lana Norman; Thomas Thundat; Kamaljit Kaur

Specificity of the class IIa bacteriocin Leucocin A (LeuA), an antimicrobial peptide active against Gram-positive bacteria, including Listeria monocytogenes , is known to be dictated by the C-terminal amphipathic helical region, including the extended hairpin-like structure. However, its specificity when attached to a substrate has not been investigated. Exploiting properties of LeuA, we have synthesized two LeuA derivatives, which span the amphipathic helical region of the wild-type LeuA, consisting of 14- (14AA LeuA, CWGEAFSAGVHRLA) and 24-amino acid residues (24AA LeuA, CSVNWGEAFSAGVHRLANGGNGFW). The peptides were purified to >95% purity, as shown by analytical RP-HPLC and mass spectrometry. By including an N-terminal cysteine group, the tailored peptide fragments were readily immobilized at the gold interfaces. The resulting thickness and molecular orientation, determined by ellipsometry and grazing angle infrared spectroscopy, respectively, indicated that the peptides were covalently immobilized in a random helical orientation. The bacterial specificity of the anchored peptide fragments was tested against Gram-positive and Gram-negative bacteria. Our results showed that the adsorbed 14AA LeuA exhibited no specificity toward the bacterial strains, whereas the surface-immobilized 24AA LeuA displayed significant binding toward Gram-positive bacteria with various binding affinities from one strain to another. The 14AA LeuA did not show binding as this fragment is most likely too short in length for recognition by the membrane-bound receptor on the target bacterial cell membrane. These results support the potential use of class IIa bacteriocins as molecular recognition elements in biosensing platforms.


Bioorganic & Medicinal Chemistry | 2013

Design, synthesis and evaluation of antimicrobial activity of N-terminal modified Leucocin A analogues

Krishna Chaitanya Bodapati; Rania Soudy; Hashem Etayash; Michael E. Stiles; Kamaljit Kaur

Class IIa bacteriocins are potent antimicrobial peptides produced by lactic acid bacteria to destroy competing microorganisms. The N-terminal domain of these peptides consists of a conserved YGNGV sequence and a disulphide bond. The YGNGV motif is essential for activity, whereas, the two cysteines involved in the disulphide bond can be replaced with hydrophobic residues. The C-terminal region has variable sequences, and folds into a conserved amphipathic α-helical structure. To elucidate the structure-activity relationship in the N-terminal domain of these peptides, three analogues (1-3) of a class IIa bacteriocin, Leucocin A (LeuA), were designed and synthesized by replacing the N-terminal β-sheet residues of the native peptide with shorter β-turn motifs. Such replacement abolished the antibacterial activity in the analogues, however, analogue 1 was able to competitively inhibit the activity of native LeuA. Native LeuA (37-mer) was synthesized using native chemical ligation method in high yield. Solution conformation study using circular dichroism spectroscopy and molecular dynamics simulations suggested that the C-terminal region of analogue 1 adopts helical folding as found in LeuA, while the N-terminal region did not fold into β-sheet conformation. These structure-activity studies highlight the role of proper folding and complete sequence in the activity of class IIa bacteriocins.


Current Topics in Medicinal Chemistry | 2015

Peptide Bacteriocins – Structure Activity Relationships

Hashem Etayash; Sarfuddin Azmi; Ramana Venkata Dangeti; Kamaljit Kaur

With the growing concerns in the scientific and health communities over increasing levels of antibiotic resistance, antimicrobial peptide bacteriocins have emerged as promising alternatives to conventional small molecule antibiotics. A substantial attention has recently focused on the utilization of bacteriocins in food preservation and health safety. Despite the fact that a large number of bacteriocins have been reported, only a few have been fully characterized and structurally elucidated. Since knowledge of the molecular structure is a key for understanding the mechanism of action and therapeutic effects of peptide, we centered our focus in this review on the structure-activity relationships of bacteriocins with a particular focus in seven bacteriocins, namely, nisin, microcin J25, microcin B17, microcin C, leucocin A, sakacin P, and pediocin PA-1. Significant structural changes responsible for the altered activity of the recent bacteriocin analogues are discussed here.


Molecular Pharmaceutics | 2017

Breast Cancer Targeting Peptide Binds Keratin 1: A New Molecular Marker for Targeted Drug Delivery to Breast Cancer

Rania Soudy; Hashem Etayash; Kamran Bahadorani; Afsaneh Lavasanifar; Kamaljit Kaur

The biomarkers or receptors expressed on cancer cells and the targeting ligands with high binding affinity for biomarkers play a key role in early detection and treatment of breast cancer. The breast cancer targeting peptide p160 (12-mer) and its enzymatically stable analogue 18-4 (10-mer) showed marked potential for breast cancer drug delivery using cell studies and animal models. Herein, we used affinity purification, liquid chromatography-tandem mass spectrometry, and proteomics to identify keratin 1 (KRT1) as the target receptor highly expressed on breast cancer cells for p160 peptide(s). Western blot and immunocytochemistry in MCF-7 breast cancer cells confirmed the identity of KRT1. We demonstrate that the p160 or 18-4 binding to MCF-7 breast cancer cells is dependent on the expression of KRT1, and we confirm peptide-KRT1 binding specificity using SPR experiments (Kd ∼ 1.1 μM and 0.98 μM for p160 and 18-4, respectively). Furthermore, we assessed the ability of peptide 18-4 to improve the cellular uptake and anticancer activity of a pro-apoptotic antimicrobial peptide, microcin J25 (MccJ25), in breast cancer cells. A covalent conjugate of peptide 18-4 with MccJ25 showed preferential cytotoxicity toward breast cancer cells with minimal cytotoxicity against normal HUVEC cells. The conjugate inhibited the growth of MDA-MB-435 MDR multidrug-resistant cells with an IC50 comparable to that of nonresistant cells. Conjugation improved selective cellular uptake of MccJ25, and the conjugate triggered cancer cell death by apoptosis. Our findings establish KRT1 as a new marker for breast cancer targeting. Additionally, it pinpoints the potential use of antimicrobial lasso peptides as a novel class of anticancer therapeutics.


ACS Sensors | 2017

Metabolic Study of Cancer Cells Using a pH Sensitive Hydrogel Nanofiber Light Addressable Potentiometric Sensor

Parmiss Mojir Shaibani; Hashem Etayash; Selvaraj Naicker; Kamaljit Kaur; Thomas Thundat

We report a simple, fast, and cost-effective approach that measures cancer cell metabolism and their response to anticancer drugs in real time. Using a Light Addressable Potentiometric Sensor integrated with pH sensitive hydrogel nanofibers (NF-LAPS), we detect localized changes in pH of the media as cancer cells consume glucose and release lactate. NF-LAPS shows a sensitivity response of 74 mV/pH for cancer cells. Cancer cells (MDA MB231) showed a response of ∼0.4 unit change in pH compared to virtually no change observed for normal cells (MCF10A). We also observed a drop in pH for the multidrug-resistant cancer cells (MDA-MB-435MDR) in the presence of doxorubicin. However, inhibition of the metabolic enzymes such as hexokinase and lactate dehydrogenase-A suggested an improvement in the efficacy of doxorubicin by decreasing the level of acidification. This approach, based on extracellular acidification, enhances our understanding of cancer cell metabolic modes and their response to chemotherapies, which will help in the development of better treatments, including choice of drugs and dosages.


Analytical Methods | 2015

Rapid label-free detection of E. coli using antimicrobial peptide assisted impedance spectroscopy

Keren Jiang; Hashem Etayash; Sarfuddin Azmi; Selvaraj Naicker; Mahtab Hassanpourfard; Parmiss Mojir Shaibani; Garima Thakur; Kamaljit Kaur; Thomas Thundat

There is an increasing demand for rapid detection of waterborne pathogens to monitor drinking water safety. We demonstrate a compact, label-free sensor array for rapid detection of Escherichia coli (E. coli) in contaminated water samples using antimicrobial peptide assisted impedimetric sensor platform. Interdigitated electrode arrays immobilized with the antimicrobial peptide Colicin V (ColV) were used to screen the affinity towards different bacterial strains by monitoring impedance variations in real-time. This ColV assisted impedance biosensor exhibited high selectivity towards Gram-negative strains particularly towards E. coli strains. This selective detection of E. coli from other strains was observed at 102 cfu mL−1, which is clinically relevant. The sensor can detect E. coli from 102 to 106 cfu mL−1 in water sample at pH 7 to 9. These results show that the antimicrobial peptide ColV assisted impedimetric array is capable of rapid, specific detection of E. coli in contaminated water samples.

Collaboration


Dive into the Hashem Etayash's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge