Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hasige A. Sathish is active.

Publication


Featured researches published by Hasige A. Sathish.


Journal of Pharmaceutical Sciences | 2010

Understanding and Modulating Opalescence and Viscosity in a Monoclonal Antibody Formulation

Branden A. Salinas; Hasige A. Sathish; Steven M. Bishop; Nick Harn; John F. Carpenter; Theodore W. Randolph

Opalescence and high viscosities can pose challenges for high concentration formulation of antibodies. Both phenomena result from protein-protein intermolecular interactions that can be modulated with solution ionic strength. We studied a therapeutic monoclonal antibody (mAb) that exhibits high viscosity in solutions at low ionic strength ( approximately 20 cP at 90 mg/mL and 23 degrees C) and significant opalescence at isotonic ionic strength (approximately 100 nephelometric turbidity units at 90 mg/mL and 23 degrees C). The intermolecular interactions responsible for these effects were characterized using membrane osmometry, static light scattering, and zeta potential measurements. The net protein-protein interactions were repulsive at low ionic strength ( approximately 4 mM) and attractive at isotonic ionic strengths. The high viscosities are attributed to electroviscous forces at low ionic strength and the significant opalescence at isotonic ionic strength is correlated with attractive antibody interactions. Furthermore, there appears to be a connection to critical phenomena and it is suggested that the extent of opalescence is dependent on the proximity to the critical point. We demonstrate that by balancing the repulsive and attractive forces via intermediate ionic strengths and by increasing the mAb concentration above the apparent critical concentration both opalescence and viscosity can be simultaneously minimized.


Journal of Pharmaceutical Sciences | 2011

Formulation Development of Therapeutic Monoclonal Antibodies Using High-Throughput Fluorescence and Static Light Scattering Techniques: Role of Conformational and Colloidal Stability

Deborah S. Goldberg; Steven M. Bishop; Ambarish Shah; Hasige A. Sathish

In this work, we describe the application of two different high-throughput screening (HTS) techniques that can be used to determine protein stability during early formulation development. Differential scanning fluorescence (DSF) and differential static light scattering (DSLS) are used to determine the conformational and colloidal stability of therapeutic monoclonal antibodies (mAbs) during thermal denaturation in a high-throughput fashion. DSF utilizes SYPRO Orange, a polarity-sensitive extrinsic fluorescent probe, to monitor protein unfolding. We found that melting temperatures determined by DSF have a linear correlation with melting temperatures of the first domain unfolding determined by differential scanning calorimetry, establishing DSF as a reliable method for measuring thermal stability. The DSLS method employs static light scattering to evaluate protein stability during thermal denaturation in a 384-well format. Overall comparison between mAb aggregation under typical accelerated stress conditions (40°C) and the thermal stability obtained by DSF and DSLS is also presented. Both of these HTS methods are cost effective with high-throughput capability and can be implemented in any laboratory. Combined with other emerging HTS techniques, DSF and DSLS could be powerful tools for mAb formulation optimization.


Journal of Pharmaceutical Sciences | 2013

Correlating excipient effects on conformational and storage stability of an IgG1 monoclonal antibody with local dynamics as measured by hydrogen/deuterium-exchange mass spectrometry.

Prakash Manikwar; Ranajoy Majumdar; John M. Hickey; Santosh V. Thakkar; Hardeep S. Samra; Hasige A. Sathish; Steven M. Bishop; C. Russell Middaugh; David D. Weis; David B. Volkin

The effects of sucrose and arginine on the conformational and storage stability of an IgG1 monoclonal antibody (mAb) were monitored by differential scanning calorimetry (DSC) and size-exclusion chromatography (SEC), respectively. Excipient effects on protein physical stability were then compared with their effects on the local flexibility of the mAb in solution at pH 6, 25°C using hydrogen/deuterium-exchange mass spectrometry (H/D-MS). Compared with a 0.1 M NaCl control, sucrose (0.5 M) increased conformational stability (T(m) values), slowed the rate of monomer loss, reduced the formation of insoluble aggregates, and resulted in a global trend of small decreases in local flexibility across most regions of the mAb. In contrast, the addition of arginine (0.5 M) decreased the mAbs conformational stability, increased the rate of loss of monomer with elevated levels of soluble and insoluble aggregates, and led to significant increases in the local flexibility in specific regions of the mAb, most notably within the constant domain 2 of the heavy chain (C(H)2). These results provide new insights into the effect of sucrose and arginine on the local dynamics of IgG1 domains as well as preliminary correlations between local flexibility within specific segments of the C(H)2 domain (notably heavy chain 241-251) and the mAbs overall physical stability.


Biochemistry | 2013

Effects of Salts from the Hofmeister Series on the Conformational Stability, Aggregation Propensity, and Local Flexibility of an IgG1 Monoclonal Antibody

Ranajoy Majumdar; Prakash Manikwar; John M. Hickey; Hardeep S. Samra; Hasige A. Sathish; Steven M. Bishop; C. Russell Middaugh; David B. Volkin; David D. Weis

This work examines the effect of three anions from the Hofmeister series (sulfate, chloride, and thiocyanate) on the conformational stability and aggregation rate of an IgG1 monoclonal antibody (mAb) and corresponding changes in the mAbs backbone flexibility (at pH 6 and 25 °C). Compared to a 0.1 M NaCl control, thiocyanate (0.5 M) decreased the melting temperatures (Tm) for three observed conformational transitions within the mAb by 6-9 °C, as measured by differential scanning calorimetry. Thiocyanate also accelerated the rate of monomer loss at 40 °C over 12 months, as monitored by size exclusion chromatography. Backbone flexibility, as measured via H/D exchange mass spectrometry, increased in two segments in the CH2 domain with more subtle changes across several additional regions. Chloride (0.5 M) caused slight increases in the Tm values, small changes in aggregation rate, and minimal yet consistent decreases in flexibility across various domains with larger effects noted within the VL, CH1, and CH3 domains. In contrast, 0.5 M sulfate increased Tm values, had small stabilizing influences on aggregate formation over time, yet substantially increased the flexibility of two specific regions in the CH1 and VL domains. While thiocyanate-induced conformational destabilization of the mAb correlated with increased local flexibility of specific regions in the CH2 domain (especially residues 241-251 in the heavy chain), the stabilizing anion sulfate did not affect these CH2 regions.


Journal of Pharmaceutical Sciences | 2012

Excipients differentially influence the conformational stability and pretransition dynamics of two IgG1 monoclonal antibodies.

Santosh V. Thakkar; Sangeeta B. Joshi; Matthew E. Jones; Hasige A. Sathish; Steven M. Bishop; David B. Volkin; C. Russell Middaugh

Since immunoglobulins are conformationally dynamic molecules in solution, we studied the effect of stabilizing and destabilizing excipients on the conformational stability and dynamics of two IgG1 monoclonal antibodies (mAbs; mAb-A and mAb-B) using a variety of biophysical approaches. Even though the two mAbs are of the same IgG1 subtype, the unfolding patterns, aggregation behavior, and pretransition dynamics of these two antibodies were strikingly different in response to external perturbations such as pH, temperature, and presence of excipients. Sucrose and arginine were identified as stabilizers and destabilizers, respectively, on the basis of their influence on conformational stability for both the IgG1 mAbs. The two excipients, however, had distinct effective concentrations and different effects on the conformational stability and pretransition dynamics of the two mAbs as measured by a combination of differential scanning calorimetry, high-resolution ultrasonic spectroscopy, and red-edge excitation shift fluorescence studies. Stabilizing concentrations of sucrose were found to decrease the internal motions of mAb-B, whereas arginine marginally increased its adiabatic compressibility in the pretransition region. Both sucrose and arginine did not influence the pretransition dynamics of mAb-A. The potential reasons for such differences in excipient effects between two IgG1 mAbs are discussed.


Journal of Pharmaceutical Sciences | 2010

Buffer-Dependent Fragmentation of a Humanized Full-Length Monoclonal Antibody

Branden A. Salinas; Hasige A. Sathish; Ambarish Shah; John F. Carpenter; Theodore W. Randolph

During storage stability studies of a monoclonal antibody (mAb) it was determined that the primary route of degradation involved fragmentation into lower molecular weight species. The fragmentation was characterized with size-exclusion high performance liquid chromatography (SE-HPLC), SDS-PAGE, and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. Fragmentation proceeded via hydrolysis, likely catalyzed by trace metal ions, of a peptide bond in the hinge region of the mAbs heavy chain, which produced two prominent low molecular weight species during storage: a single, free Fab fragment and a Fab + Fc fragment. The fragmentation is observed in phosphate-buffered solutions at two ionic strengths but not in histidine-buffered solutions at identical ionic strengths. Chaotrope-induced and thermally induced unfolding studies of the mAb indicated differences in the unfolding pathways between the two buffer solutions. The folding intermediate observed during chaotrope-induced unfolding was further characterized by intrinsic fluorescence quenching, which suggested that a small portion of the molecule is resistant to chaotrope-induced unfolding in histidine buffer systems. The thermally induced unfolding indicates a reduction in cooperativity of the unfolding process in the presence of histidine relative to phosphate. A relationship between the histidine-induced effects on unfolding pathway and the relative resistance to fragmentation is suggested.


Journal of Pharmaceutical Sciences | 2015

Mechanism of Reversible Self‐Association of a Monoclonal Antibody: Role of Electrostatic and Hydrophobic Interactions

Reza Esfandiary; Arun Parupudi; Jose Casas-Finet; Dhanesh Gadre; Hasige A. Sathish

Reversible self-association of protein therapeutics, the phenomenon of formation of native reversible oligomeric species as a result of noncovalent intermolecular interactions, can add additional manufacturing, stability, delivery, and safety complexities in biopharmaceutical development. Its early detection, characterization, and mitigation can therefore contribute to the success of drug development. A variety of structural and environmental factors can contribute to the modulation of self-association with mechanisms still elusive in some cases due to the inherent structural complexity of proteins. By combining the capabilities of dynamic and static light scattering techniques, the modulatory effects of a variety of solution conditions on a model IgG1s (mAbA) intermolecular interactions have been utilized to derive mechanism of its self-association at relatively low-protein concentration. The analysis of the effect of pH, buffer type, Hofmeister salts, and aromatic amino acids utilizing light scattering supported a combined role of hydrophobic and electrostatic interactions in mAbA self-association. Fitting of the data into the equilibrium models obtained from the multiangle static light scattering provided the enthalpic and entropic contributions of self-association, highlighting the more dominant effect of electrostatic interactions. In addition, studies of the Fab and Fc fragments of mAbA suggested the key role of the former in observed self-association.


Journal of Pharmaceutical Sciences | 2012

Local dynamics and their alteration by excipients modulate the global conformational stability of an lgG1 monoclonal antibody

Santosh V. Thakkar; Jae Hyun Kim; Hardeep S. Samra; Hasige A. Sathish; Steven M. Bishop; Sangeeta B. Joshi; David B. Volkin; C. Russell Middaugh

A molecular understanding of excipient effects on the interrelationship(s) between dynamics and conformational stability of proteins, such as monoclonal antibodies (mAbs), can be important for their pharmaceutical development. The current study examines stabilizing and destabilizing effects of excipients on the conformational stability and local dynamics of distinct solvent-exposed regions within an IgG1 monoclonal antibody (mAb-B). The principles of site-selective photoselection upon red-edge excitation, accompanied by acrylamide quenching of tryptophan fluorescence were employed in this study. The initiation of mAb-B thermal unfolding occurs by structural alterations in the more solvent-exposed regions of the antibody, which subsequently leads to a cascade of structural alterations in its relatively more solvent-shielded regions. In addition, an increase in internal dynamics of solvent-shielded regions made mAb-B more susceptible to thermally induced structural perturbations resulting in its global destabilization. Sucrose and arginine exert their stabilizing and destabilizing effects by predominantly influencing the conformational stability of solvent-exposed regions in mAb-B. The complex molecular effects of sucrose and arginine on local dynamics of different regions in mAb-B and their correlation with the proteins conformational stability are described within the pretransition range, at the onset temperature (T(onset)) and at the thermal melting temperature (T(M)).


mAbs | 2016

Charge-mediated Fab-Fc interactions in an IgG1 antibody induce reversible self-association, cluster formation, and elevated viscosity

Jayant Arora; Yue Hu; Reza Esfandiary; Hasige A. Sathish; Steven M. Bishop; Sangeeta B. Joshi; C. Russell Middaugh; David B. Volkin; David D. Weis

ABSTRACT Concentration-dependent reversible self-association (RSA) of monoclonal antibodies (mAbs) poses a challenge to their pharmaceutical development as viable candidates for subcutaneous delivery. While the role of the antigen-binding fragment (Fab) in initiating RSA is well-established, little evidence supports the involvement of the crystallizable fragment (Fc). In this report, a variety of biophysical tools, including hydrogen exchange mass spectrometry, are used to elucidate the protein interface of such non-covalent protein-protein interactions. Using dynamic and static light scattering combined with viscosity measurements, we find that an IgG1 mAb (mAb-J) undergoes RSA primarily through electrostatic interactions and forms a monomer-dimer-tetramer equilibrium. We provide the first direct experimental mapping of the interface formed between the Fab and Fc domains of an antibody at high protein concentrations. Charge distribution heterogeneity between the positively charged interface spanning complementarity-determining regions CDR3H and CDR2L in the Fab and a negatively charged region in CH3/Fc domain mediates the RSA of mAb-J. When arginine and NaCl are added, they disrupt RSA of mAb-J and decrease the solution viscosity. Fab-Fc domain interactions between mAb monomers may promote the formation of large transient antibody complexes that ultimately cause increases in solution viscosity. Our findings illustrate how limited specific arrangements of amino-acid residues can cause mAbs to undergo RSA at high protein concentrations and how conserved regions in the Fc portion of the antibody can also play an important role in initiating weak and transient protein-protein interactions.


mAbs | 2016

Computational tool for the early screening of monoclonal antibodies for their viscosities

Neeraj J. Agrawal; Bernhard Helk; Sandeep Kumar; Neil Mody; Hasige A. Sathish; Hardeep S. Samra; Patrick M. Buck; Li Li; Bernhardt L. Trout

Highly concentrated antibody solutions often exhibit high viscosities, which present a number of challenges for antibody-drug development, manufacturing and administration. The antibody sequence is a key determinant for high viscosity of highly concentrated solutions; therefore, a sequence- or structure-based tool that can identify highly viscous antibodies from their sequence would be effective in ensuring that only antibodies with low viscosity progress to the development phase. Here, we present a spatial charge map (SCM) tool that can accurately identify highly viscous antibodies from their sequence alone (using homology modeling to determine the 3-dimensional structures). The SCM tool has been extensively validated at 3 different organizations, and has proved successful in correctly identifying highly viscous antibodies. As a quantitative tool, SCM is amenable to high-throughput automated analysis, and can be effectively implemented during the antibody screening or engineering phase for the selection of low-viscosity antibodies.

Collaboration


Dive into the Hasige A. Sathish's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernhardt L. Trout

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge