Hassan Abdulrazzak
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hassan Abdulrazzak.
Molecular Therapy | 2012
Dafni Moschidou; Sayandip Mukherjee; Michael P. Blundell; Katharina Drews; Gemma N. Jones; Hassan Abdulrazzak; Beata Nowakowska; Anju Phoolchund; Kenneth Lay; T Selvee Ramasamy; Mara Cananzi; Daniel Nettersheim; M.H.F. Sullivan; Jennifer M. Frost; Gudrun E. Moore; Joris Vermeesch; Nicholas M. Fisk; Adrian J. Thrasher; Anthony Atala; James Adjaye; Hubert Schorle; Paolo De Coppi; Pascale V. Guillot
Induced pluripotent stem cells (iPSCs) with potential for therapeutic applications can be derived from somatic cells via ectopic expression of a set of limited and defined transcription factors. However, due to risks of random integration of the reprogramming transgenes into the host genome, the low efficiency of the process, and the potential risk of virally induced tumorigenicity, alternative methods have been developed to generate pluripotent cells using nonintegrating systems, albeit with limited success. Here, we show that c-KIT+ human first-trimester amniotic fluid stem cells (AFSCs) can be fully reprogrammed to pluripotency without ectopic factors, by culture on Matrigel in human embryonic stem cell (hESC) medium supplemented with the histone deacetylase inhibitor (HDACi) valproic acid (VPA). The cells share 82% transcriptome identity with hESCs and are capable of forming embryoid bodies (EBs) in vitro and teratomas in vivo. After long-term expansion, they maintain genetic stability, protein level expression of key pluripotency factors, high cell-division kinetics, telomerase activity, repression of X-inactivation, and capacity to differentiate into lineages of the three germ layers, such as definitive endoderm, hepatocytes, bone, fat, cartilage, neurons, and oligodendrocytes. We conclude that AFSC can be utilized for cell banking of patient-specific pluripotent cells for potential applications in allogeneic cellular replacement therapies, pharmaceutical screening, and disease modeling.
Journal of the Royal Society Interface | 2010
Hassan Abdulrazzak; Dafni Moschidou; Gemma N. Jones; Pascale V. Guillot
Foetal stem cells (FSCs) can be isolated during gestation from many different tissues such as blood, liver and bone marrow as well as from a variety of extraembryonic tissues such as amniotic fluid and placenta. Strong evidence suggests that these cells differ on many biological aspects such as growth kinetics, morphology, immunophenotype, differentiation potential and engraftment capacity in vivo. Despite these differences, FSCs appear to be more primitive and have greater multi-potentiality than their adult counterparts. For example, foetal blood haemopoietic stem cells proliferate more rapidly than those found in cord blood or adult bone marrow. These features have led to FSCs being investigated for pre- and post-natal cell therapy and regenerative medicine applications. The cells have been used in pre-clinical studies to treat a wide range of diseases such as skeletal dysplasia, diaphragmatic hernia and respiratory failure, white matter damage, renal pathologies as well as cancers. Their intermediate state between adult and embryonic stem cells also makes them an ideal candidate for reprogramming to the pluripotent status.
Circulation Research | 2000
Charles S. Redwood; Karin Lohmann; Wu Bing; Giovanna M. Esposito; Kathryn Elliott; Hassan Abdulrazzak; Adam Knott; Ian Purcell; Steven B. Marston; Hugh Watkins
Familial hypertrophic cardiomyopathy (HCM) is caused by mutations in at least 8 contractile protein genes, most commonly beta myosin heavy chain, myosin binding protein C, and cardiac troponin T. Affected individuals are heterozygous for a particular mutation, and most evidence suggests that the mutant protein acts in a dominant-negative fashion. To investigate the functional properties of a truncated troponin T shown to cause HCM, both wild-type and mutant human cardiac troponin T were overexpressed in Escherichia coli, purified, and combined with human cardiac troponins I and C to reconstitute human cardiac troponin. Significant differences were found between the regulatory properties of wild-type and mutant troponin in vitro, as follows. (1) In actin-tropomyosin-activated myosin ATPase assays at pCa 9, wild-type troponin caused 80% inhibition of ATPase, whereas the mutant complex gave negligible inhibition. (2) Similarly, in the in vitro motility assay, mutant troponin failed to decrease both the proportion of actin-tropomyosin filaments motile and the velocity of motile filaments at pCa 9. (3) At pCa 5, the addition of mutant complex caused a greater increase (21.7%) in velocity of actin-tropomyosin filaments than wild-type troponin (12.3%). These data suggest that the truncated troponin T prevents switching off of the thin filament at low Ca(2+). However, the study of thin filaments containing varying ratios of wild-type and mutant troponin T at low Ca(2+) indicated an opposite effect of mutant troponin, causing enhancement of the inhibitory effect of wild-type complex, when it is present in a low ratio (10% to 50%). These multiple effects need to be taken into account to explain the physiological consequences of this mutation in HCM. Further, these findings underscore the importance of studying mixed mutant:wild-type preparations to faithfully model this autosomal-dominant disease.
Stem Cells Translational Medicine | 2012
Gemma N. Jones; Dafni Moschidou; Kenneth Lay; Hassan Abdulrazzak; Maximilien Vanleene; Sandra J. Shefelbine; Julia M. Polak; Paolo De Coppi; Nicholas M. Fisk; Pascale V. Guillot
Stem cells have considerable potential to repair damaged organs and tissues. We previously showed that prenatal transplantation of human first trimester fetal blood mesenchymal stem cells (hfMSCs) in a mouse model of osteogenesis imperfecta (oim mice) led to a phenotypic improvement, with a marked decrease in fracture rate. Donor cells differentiated into mature osteoblasts, producing bone proteins and minerals, including collagen type Iα2, which is absent in nontransplanted mice. This led to modifications of the bone matrix and subsequent decrease of bone brittleness, indicating that grafted cells directly contribute to improvement of bone mechanical properties. Nevertheless, the therapeutic effect was incomplete, attributing to the limited level of engraftment in bone. In this study, we show that although migration of hfMSCs to bone and bone marrow is CXCR4‐SDF1 (SDF1 is stromal‐derived factor) dependent, only a small number of cells present CXCR4 on the cell surface despite high levels of internal CXCR4. Priming with SDF1, however, upregulates CXCR4 to increase the CXCR4+ cell fraction, improving chemotaxis in vitro and enhancing engraftment in vivo at least threefold in both oim and wild‐type bone and bone marrow. Higher engraftment in oim bones was associated with decreased bone brittleness. This strategy represents a step to improve the therapeutic benefits of fetal cell therapy toward being curative.
Biochemical Journal | 2002
David Burton; Hassan Abdulrazzak; Adam Knott; Kathryn Elliott; Charles Redwood; Hugh Watkins; Steven B. Marston; Christopher C. Ashley
We investigated the effects of two mutations in human cardiac troponin I, Arg(145)-->Gly and Gly(203)-->Ser, that are reported to cause familial hypertrophic cardiomyopathy. Mutant and wild-type troponin I, overexpressed in Escherichia coli, were used to reconstitute troponin complexes in vanadate-treated guinea pig cardiac trabeculae skinned fibres, and thin filaments were reconstituted with human cardiac troponin and tropomyosin along with rabbit skeletal muscle actin for in vitro motility and actomyosin ATPase assays. Troponin containing the Arg(145)-->Gly mutation inhibited force in skinned trabeculae less than did the wild-type, and had almost no inhibitory function in the in vitro motility assay. There was an enhanced inhibitory function with mixtures of 10-30% [Gly(145)]troponin I with the wild-type protein. Skinned trabeculae reconstituted with troponin I containing the Gly(203)-->Ser mutation and troponin C produced less Ca(2+)-activated force (64+/-8% of wild-type) and demonstrated lower Ca(2+) sensitivity [Delta(p)Ca(50) (log of the Ca(2+) concentration that gave 50% of maximal activation) 0.25 unit (P<0.05)] compared with wild-type troponin I, but thin filaments containing [Ser(203)]-troponin I were indistinguishable from those containing the wild-type protein in in vitro motility and ATPase assays. Thus these two mutations each result in hypertrophic cardiomyopathy, but have opposite effects on the overall contractility of the muscle in the systems we investigated, indicating either that we have not yet identified the relevant alteration in contractility for the Gly(203)->Ser mutation, or that the disease does not result directly from any particular alteration in contractility.
Stem Cells and Development | 2014
Gemma N. Jones; Dafni Moschidou; Hassan Abdulrazzak; Bhalraj Singh Kalirai; Maximilien Vanleene; Suchaya Osatis; Sandra J. Shefelbine; Nicole J. Horwood; Massimo Marenzana; Paolo De Coppi; J. H. Duncan Bassett; Graham R. Williams; Nicholas M. Fisk; Pascale V. Guillot
Osteogenesis imperfecta (OI) is a genetic bone pathology with prenatal onset, characterized by brittle bones in response to abnormal collagen composition. There is presently no cure for OI. We previously showed that human first trimester fetal blood mesenchymal stem cells (MSCs) transplanted into a murine OI model (oim mice) improved the phenotype. However, the clinical use of fetal MSC is constrained by their limited number and low availability. In contrast, human fetal early chorionic stem cells (e-CSC) can be used without ethical restrictions and isolated in high numbers from the placenta during ongoing pregnancy. Here, we show that intraperitoneal injection of e-CSC in oim neonates reduced fractures, increased bone ductility and bone volume (BV), increased the numbers of hypertrophic chondrocytes, and upregulated endogenous genes involved in endochondral and intramembranous ossification. Exogenous cells preferentially homed to long bone epiphyses, expressed osteoblast genes, and produced collagen COL1A2. Together, our data suggest that exogenous cells decrease bone brittleness and BV by directly differentiating to osteoblasts and indirectly stimulating host chondrogenesis and osteogenesis. In conclusion, the placenta is a practical source of stem cells for the treatment of OI.
Journal of Cellular and Molecular Medicine | 2009
George Kotzamanis; Hassan Abdulrazzak; Jennifer Gifford-Garner; Pei Ling Haussecker; Wing Cheung; Catherine Grillot-Courvalin; Ann Harris; Christos Kittas; Athanasios Kotsinas; Vassilis G. Gorgoulis; Clare Huxley
The use of genomic DNA rather than cDNA or mini‐gene constructs in gene therapy might be advantageous as these contain intronic and long‐range control elements vital for accurate expression. For gene therapy of cystic fibrosis though, no bacterial artificial chromosome (BAC), containing the whole CFTR gene is available. We have used Red homologous recombination to add a to a previously described vector to construct a new BAC vector with a 250.3‐kb insert containing the whole coding region of the CFTR gene along with 40.1 kb of DNA 5′ to the gene and 25 kb 3′ to the gene. This includes all the known control elements of the gene. We evaluated expression by RT‐PCR in CMT‐93 cells and showed that the gene is expressed both from integrated copies of the BAC and also from episomes carrying the oriP/EBNA‐1 element. Sequencing of the human CFTR mRNA from one clone showed that the BAC is functional and can generate correctly spliced mRNA in the mouse background. The BAC described here is the only CFTR genomic construct available on a convenient vector that can be readily used for gene expression studies or in vivo studies to test its potential application in gene therapy for cystic fibrosis.
Current Stem Cell Research & Therapy | 2013
Hassan Abdulrazzak; Paolo De Coppi; Pascale V. Guillot
Human amniotic fluid cells have been used traditionally as a diagnostic tool for genetic anomalies. More recently it has been recognized that amniotic fluid contains populations of stem cells. Mesenchymal stem cells (AFMSC) were first to be described. These cells are able to differentiate towards mesodermal lineages. More recently cells with broader potential, defined as amniotic fluid stem cells (AFSC), were also isolated. They have intermediate characteristics between embryonic and adult stem cells and are able to differentiate into lineages representative of all three germ layers but unlike ES cells they do not form tumours in vivo. Furthermore, AFSC have been reverted to functional pluripotency in a transgene-free approach using an epigenetics modifier. These characteristics, together with absence of ethical issues concerning their employment, have made stem cells from amniotic fluid a promising candidate for cell therapy and tissue engineering.
Bioengineered bugs | 2012
Wing Cheung; George Kotzamanis; Hassan Abdulrazzak; Sylvie Goussard; Tadashi Kaname; Athanassios Kotsinas; Vassilis G. Gorgoulis; Catherine Grillot-Courvalin; Clare Huxley
Efficient delivery of large intact vectors into mammalian cells remains problematical. Here we evaluate delivery by bacterial invasion of two large BACs of more than 150 kb in size into various cells. First, we determined the effect of several drugs on bacterial delivery of a small plasmid into different cell lines. Most drugs tested resulted in a marginal increase of the overall efficiency of delivery in only some cell lines, except the lysosomotropic drug chloroquine, which was found to increase the efficiency of delivery by 6-fold in B16F10 cells. Bacterial invasion was found to be significantly advantageous compared with lipofection in delivering large intact BACs into mouse cells, resulting in 100% of clones containing intact DNA. Furthermore, evaluation of expression of the human hypoxanthine phosphoribosyltransferase (HPRT) gene from its genomic locus, which was present in one of the BACs, showed that single copy integrations of the HPRT-containing BAC had occurred in mouse B16F10 cells and that expression of HPRT from each human copy was 0.33 times as much as from each endogenous mouse copy. These data provide new evidence that bacterial delivery is a convenient and efficient method to transfer large intact therapeutic genes into mammalian cells.
Archive | 2011
George Kotzamanis; Hassan Abdulrazzak; Athanassios Kotsinas; Vassilis G. Gorgoulis
Gene therapy is the use of genes or DNA for the treatment of diseases. For the treatment of inherited disorders, DNA carrying a functional gene is introduced into the cells of a patient to reverse the defect of the corresponding malfunctioning endogenous gene. Previous genetic characterization of the disease and cloning of the gene that causes it are necessary. In most cases, the cDNA of the therapeutic gene is cloned into a bacterial plasmid under the control of a strong heterologous promoter (often of viral origin). However, such constructs, called mini-genes, lack introns, promoters, enhancers, and long-range controlling elements that precisely control the temporal and spatial expression of the endogenous gene. For gene therapy of some diseases it is important to achieve expression of the therapeutic gene at specific levels. Expression at lower levels than normal might not be sufficient to correct the defect and at higher levels could result in undesirable effects. In other cases, tissue-specific expression may be very important. The elements responsible for controlled and tissue-specific expression of a gene usually lie within the introns and the sequences before and after the gene. Therefore, the use of genomic constructs which contain the introns and flanking DNA of the therapeutic gene is expected to be more effective than that of minigene constructs in gene therapy for certain genetic diseases where precise levels of the gene product are required (reviewed by (Perez-Luz & Diaz-Nido, 2010)). Bacterial Artificial Chromosomes (BACs), originating from the human genome project, contain genomic loci of approximately 180 kb on average and cover the entire human genome (Osoegawa et al., 2001). These sequenced BACs can accommodate most genes along with their regulatory elements and can serve as tools in gene therapy using genomic constructs. Gene therapy as a modern therapeutic tool should provide a permanent cure to the patient by long-term maintenance and expression of the administered gene. This can be achieved either by integration of the transgene into the natural chromosomes or by other mechanisms for its replication and nuclear retention. One of the most important aspects of gene therapy is the choice of the vector that will deliver and express the corrective gene in the appropriate cells. Current vectors fall into two categories: viral and non-viral. Apart from determining the method of delivery, the type of vector also determines the fate of the therapeutic gene within the cells. For instance, the vector may have the ability to remain extra-chromosomally. Non-viral artificial chromosome vectors and adeno-associated viral, adenoviral, Herpes viral and EBV vectors are all