Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hassan Moeini is active.

Publication


Featured researches published by Hassan Moeini.


Applied Microbiology and Biotechnology | 2011

Lactobacillus acidophilus as a live vehicle for oral immunization against chicken anemia virus

Hassan Moeini; Raha Abdul Rahim; Abdul Rahman Omar; Norazizah Shafee; Khatijah Yusoff

The AcmA binding domains of Lactococcus lactis were used to display the VP1 protein of chicken anemia virus (CAV) on Lactobacillus acidophilus. One and two repeats of the cell wall binding domain of acmA gene were amplified from L. lactis MG1363 genome and then inserted into co-expression vector, pBudCE4.1. The VP1 gene of CAV was then fused to the acmA sequences and the VP2 gene was cloned into the second MCS of the same vector before transformation into Escherichia coli. The expressed recombinant proteins were purified using a His-tag affinity column and mixed with a culture of L. acidophilus. Whole cell ELISA and immunofluorescence assay showed the binding of the recombinant VP1 protein on the surface of the bacterial cells. The lactobacilli cells carrying the CAV VP1 protein were used to immunize specific pathogen-free chickens through the oral route. A moderate level of neutralizing antibody to CAV was detected in the serum of the immunized chickens. A VP1-specific proliferative response was observed in splenocytes of the chickens after oral immunization. The vaccinated groups also showed increased levels of Th1 cytokines interleukin (IL)-2, IL-12, and IFN-γ. These observations suggest that L. acidophilus can be used in the delivery of vaccines to chickens.


Comparative Immunology Microbiology and Infectious Diseases | 2014

Alteration in lymphocyte responses, cytokine and chemokine profiles in chickens infected with genotype VII and VIII velogenic Newcastle disease virus

Mehdi Rasoli; Swee Keong Yeap; Sheau Wei Tan; Hassan Moeini; Aini Ideris; Mohd Hair Bejo; Noorjahan Banu Alitheen; Peter K. Kaiser; Abdul Rahman Omar

Newcastle disease (ND) is a highly contagious avian disease and one of the major causes of economic losses in the poultry industry. The emergence of virulent NDV genotypes and repeated outbreaks of NDV in vaccinated chickens have raised the need for fundamental studies on the virus-host interactions. In this study, the profiles of B and T lymphocytes and macrophages and differential expression of 26 immune-related genes in the spleen of specific-pathogen-free (SPF) chickens, infected with either the velogenic genotype VII NDV strain IBS002 or the genotype VIII NDV strain AF2240, were evaluated. A significant reduction in T lymphocyte population and an increase in the infiltration of IgM+ B cells and KUL01+ macrophages were detected in the infected spleens at 1, 3 and 4 days post-infection (dpi) (P<0.05). The gene expression profiles showed an up-regulation of CCLi3, CXCLi1, CXCLi2 (IL-8), IFN-γ, IL-12α, IL-18, IL-1β, IL-6, iNOS, TLR7, MHCI, IL-17F and TNFSF13B (P<0.05). However, these two genotypes showed different cytokine expression patterns and viral load. IBS002 showed higher viral load than AF2240 in spleen at 3 and 4dpi and caused a more rapid up-regulation of CXCLi2, IFN-γ, IL-12α, IL-18, IL-1β, iNOS and IL-10 at 3dpi. Meanwhile, the expression levels of CCLI3, CXCLi1, IFN-γ, IL-12α, IL-1β and iNOS genes were significantly higher in AF2240 at 4dpi. In addition, the expression levels of IL-10 were significantly higher in the IBS002-infected chickens at 3 and 4dpi. Hence, infection with velogenic genotype VII and VIII NDV induced different viral load and production of cytokines and chemokines associated with inflammatory reactions.


Journal of Controlled Release | 2012

Cytotoxicity and immunological responses following oral vaccination of nanoencapsulated avian influenza virus H5 DNA vaccine with green synthesis silver nanoparticles

Seyed Davoud Jazayeri; Aini Ideris; Zunita Zakaria; Kamyar Shameli; Hassan Moeini; Abdul Rahman Omar

DNA formulations provide the basis for safe and cost effective vaccine. Low efficiency is often observed in the delivery of DNA vaccines. In order to assess a new strategy for oral DNA vaccine formulation and delivery, plasmid encoding hemagglutinin (HA) gene of avian influenza virus, A/Ck/Malaysia/5858/04 (H5N1) (pcDNA3.1/H5) was formulated using green synthesis of sliver nanoparticles (AgNP) with polyethylene glycol (PEG). AgNP were successfully synthesized uniformly dispersed with size in the range of 4 to 18 nm with an average size of 11 nm. Cytotoxicity of the prepared AgNP was investigated in vitro and in vivo using MCF-7 cells and cytokine expression, respectively. At the concentration of -5 log₁₀AgNP, no cytotoxic effects were detected in MCF-7 cells with 9.5% cell death compared to the control. One-day-old specific pathogen-free (SPF) chicks immunized once by oral gavage with 10 μl of pcDNA3.1/H5 (200 ng/ml) nanoencapsulated with 40 μl AgNP (3.7×10⁻² μg of Ag) showed no clinical manifestations. PCR successfully detect the AgNP/H5 plasmid from the duodenum of the inoculated chicken as early as 1h post-immunization. Immunization of chickens with AgNP/H5 enhanced both pro inflammatory and Th1-like expressions, although no significant differences were recorded in the chickens inoculated with AgNP, AgNP/pcDNA3.1 and the control. In addition, serum samples collected from immunized chickens with AgNP/H5 showed rapidly increasing antibody against H5 on day 14 after immunization. The highest average antibody titres were detected on day 35 post-immunization at 51.2±7.5. AgNP/H5 also elicited both CD4+ and CD8+ T cells in the immunized chickens as early as day 14 after immunization, at 7.5±2.0 and 20±1.9 percentage, respectively. Hence, single oral administrations of AgNP/H5 led to induce both the antibody and cell-mediated immune responses as well as enhanced cytokine production.


Clinical & Developmental Immunology | 2015

Progress and challenges toward the development of vaccines against avian infectious bronchitis.

Faruku Bande; Siti Suri Arshad; Mohd Hair Bejo; Hassan Moeini; Abdul Rahman Omar

Avian infectious bronchitis (IB) is a widely distributed poultry disease that has huge economic impact on poultry industry. The continuous emergence of new IBV genotypes and lack of cross protection among different IBV genotypes have been an important challenge. Although live attenuated IB vaccines remarkably induce potent immune response, the potential risk of reversion to virulence, neutralization by the maternal antibodies, and recombination and mutation events are important concern on their usage. On the other hand, inactivated vaccines induce a weaker immune response and may require multiple dosing and/or the use of adjuvants that probably have potential safety risks and increased economic burdens. Consequently, alternative IB vaccines are widely sought. Recent advances in recombinant DNA technology have resulted in experimental IB vaccines that show promise in antibody and T-cells responses, comparable to live attenuated vaccines. Recombinant DNA vaccines have also been enhanced to target multiple serotypes and their efficacy has been improved using delivery vectors, nanoadjuvants, and in ovo vaccination approaches. Although most recombinant IB DNA vaccines are yet to be licensed, it is expected that these types of vaccines may hold sway as future vaccines for inducing a cross protection against multiple IBV serotypes.


Molecular Reproduction and Development | 2013

Correlation between human clusterin in seminal plasma with sperm protamine deficiency and DNA fragmentation

Mohammad Salehi; Hakimeh Akbari; Mohammad Hassan Heidari; Aidin Molouki; Kavitha Murulitharan; Hassan Moeini; Marefat Ghaffari Novin; Farhang Aabed; Hossein Taheri; Fateme Fadaei; Mehdi Mohsenzadeh; Mohammad Jafari; Aliyar Pirouzi; Reihane Heidari

Seminal proteins can be considered as factors that control fertilization. Clusterin is one such protein that has been implicated in many activities, including apoptosis inhibition, cell cycle control, DNA repair, and sperm maturation. In this study, the relationship between human secretory clusterin (sCLU) in seminal plasma with sperm parameters, protamine deficiency, and DNA fragmentation was investigated. Semen samples were collected from 63 Iranian men, and semen analysis was performed according to World Health Organization criteria and computer aided semen analysis (CASA). The concentration of sCLU in seminal plasma was measured by enzyme‐linked immunosorbant assay (ELISA), protamine deficiency was determined by chromomycin A3 staining (CMA3), and sperm DNA fragmentation was checked by sperm chromatin dispersion (SCD) assay. The level of sCLU in seminal fluid of fertile patients was 48.3 ± 38.6 ng/ml and in infertile patients was 15.5 ± 9.7 ng/ml; this difference was significant (P < 0.001). sCLU correlated negatively with protamine deficiency, sperm DNA fragmentation, and abnormal morphology. In conclusion, seminal clusterin can be considered as a marker for the quick assessment of semen quality in male infertility studies. Mol. Reprod. Dev. 80: 718–724, 2013.


Molecular Biology Reports | 2012

Detection and phylogenetic profiling of nodavirus associated with white tail disease in Malaysian Macrobrachium rosenbergii de Man.

Tayebeh Azam Saedi; Hassan Moeini; Wen Siang Tan; Khatijah Yusoff; Hassan Mohd Daud; Kua Beng Chu; Soon Guan Tan; Subha Bhassu

White tail disease (WTD) is a serious viral disease in the hatcheries and nursery ponds of Macrobrachium rosenbergii in many parts of the world. A new disease similar to WTD was observed in larvae and post larvae of M. rosenbergii cultured in Malaysia. In the present study, RT-PCR assay was used to detect the causative agents of WTD, M. rosenbergii nodavirus (MrNV) and extra small virus (XSV) using specific primers for MrNV RNA2 and XSV. The results showed the presence of MrNV in the samples with or without signs of WTD. However, XSV was only detected in some of the MrNV-positive samples. Phylogenetic analysis showed that the RNA2 of our Malaysian isolates were significantly different from the other isolates. Histopathological studies revealed myofiber degeneration of the tail muscles and liquefactive myopathy in the infected prawns. This was the first report on the occurrence of MrNV in the Malaysian freshwater prawn.


Virology Journal | 2011

Improving the potency of DNA vaccine against Chicken Anemia Virus (CAV) by fusing VP1 protein of CAV to Marek's Disease Virus (MDV) Type-1 VP22 protein

Hassan Moeini; Abdul Rahman Omar; Raha Abdul Rahim; Khatijah Yusoff

BackgroundStudies have shown that the VP22 gene of Mareks Disease Virus type-1 (MDV-1) has the property of movement between cells from the original cell of expression into the neighboring cells. The ability to facilitate the spreading of the linked proteins was used to improve the potency of the constructed DNA vaccines against chicken anemia virus (CAV).MethodsThe VP1 and VP2 genes of CAV isolate SMSC-1 were amplified and inserted into eukaryotic co-expression vector, pBudCE4.1 to construct pBudVP2-VP1. We also constructed pBudVP2-VP1/VP22 encoding CAV VP2 and the VP22 of MDV-1 linked to the CAV VP1. In vitro expression of the genes was confirmed by using RT-PCR, Western blot and indirect immunofluorescence. The vaccines were then tested in 2-week-old SPF chickens which were inoculated with the DNA plasmid constructs by the intramuscular route. After in vivo expression studies, immune responses of the immunized chickens were evaluated pre- and post-immunization.ResultsChickens vaccinated with pBudVP2-VP1/VP22 exhibited a significant increase in antibody titers to CAV and also proliferation induction of splenocytes in comparison to the chickens vaccinated with pBudVP2-VP1. Furthermore, the pBudVP2-VP1/VP22-vaccinated group showed higher level of the Th1 cytokines IL-2 and IFN-γ.ConclusionsThis study showed that MDV-1 VP22 gene is capable of enhancing the potency of DNA vaccine against CAV when fused with the CAV VP1 gene.


Comparative Immunology Microbiology and Infectious Diseases | 2011

Development of a DNA vaccine against chicken anemia virus by using a bicistronic vector expressing VP1 and VP2 proteins of CAV

Hassan Moeini; Abdul Rahman Omar; Raha Abdul Rahim; Khatijah Yusoff

In the present study, we describe the development of a DNA vaccine against chicken anemia virus. The VP1 and VP2 genes of CAV were amplified and cloned into pBudCE4.1 to construct two DNA vaccines, namely, pBudVP1 and pBudVP2-VP1. In vitro and in vivo studies showed that co-expression of VP1 with VP2 are required to induce significant levels of antibody against CAV. Subsequently, the vaccines were tested in 2-week-old SPF chickens. Chickens immunized with the DNA-plasmid pBudVP2-VP1 showed positive neutralizing antibody titer against CAV. Furthermore, VP1-specific proliferation induction of splenocytes and also high serum levels of Th1 cytokines, IL-2 and IFN-γ were detected in the pBudVP2-VP1-vaccinated chickens. These results suggest that the recombinant DNA plasmid co-expressing VP1 and VP2 can be used as a potential DNA vaccine against CAV.


Journal of Veterinary Science | 2016

Improved immunogenicity of Newcastle disease virus inactivated vaccine following DNA vaccination using Newcastle disease virus hemagglutinin-neuraminidase and fusion protein genes

Masoumeh Firouzamandi; Hassan Moeini; Davood Hosseini; Mohd Hair Bejo; Abdul Rahman Omar; Parvaneh Mehrbod; Aini Ideris

The present study describes the development of DNA vaccines using the hemagglutinin-neuraminidase (HN) and fusion (F) genes from AF2240 Newcastle disease virus strain, namely pIRES/HN, pIRES/F and pIRES-F/HN. Transient expression analysis of the constructs in Vero cells revealed the successful expression of gene inserts in vitro. Moreover, in vivo experiments showed that single vaccination with the constructed plasmid DNA (pDNA) followed by a boost with inactivated vaccine induced a significant difference in enzyme-linked immunosorbent assay antibody levels (p < 0.05) elicited by either pIRES/F, pIRES/F+ pIRES/HN or pIRES-F/HN at one week after the booster in specific pathogen free chickens when compared with the inactivated vaccine alone. Taken together, these results indicated that recombinant pDNA could be used to increase the efficacy of the inactivated vaccine immunization procedure.


International Journal of Nanomedicine | 2016

Preparation, characterization, and in ovo vaccination of dextran-spermine nanoparticle DNA vaccine coexpressing the fusion and hemagglutinin genes against Newcastle disease.

Masoumeh Firouzamandi; Hassan Moeini; Seyed Davood Hosseini; Mohd Hair Bejo; Abdul Rahman Omar; Parvaneh Mehrbod; Mohamed Ezzat El Zowalaty; Thomas J. Webster; Aini Ideris

Plasmid DNA (pDNA)-based vaccines have emerged as effective subunit vaccines against viral and bacterial pathogens. In this study, a DNA vaccine, namely plasmid internal ribosome entry site-HN/F, was applied in ovo against Newcastle disease (ND). Vaccination was carried out using the DNA vaccine alone or as a mixture of the pDNA and dextran-spermine (D-SPM), a nanoparticle used for pDNA delivery. The results showed that in ovo vaccination with 40 μg pDNA/egg alone induced high levels of antibody titer (P<0.05) in specific pathogen-free (SPF) chickens at 3 and 4 weeks postvaccination compared to 2 weeks postvaccination. Hemagglutination inhibition (HI) titer was not significantly different between groups injected with 40 μg pDNA + 64 μg D-SPM and 40 μg pDNA at 4 weeks postvaccination (P>0.05). Higher antibody titer was observed in the group immunized with 40 μg pDNA/egg at 4 weeks postvaccination. The findings also showed that vaccination with 40 μg pDNA/egg alone was able to confer protection against Newcastle disease virus strain NDIBS002 in two out of seven SPF chickens. Although the chickens produced antibody titers 3 weeks after in ovo vaccination, it was not sufficient to provide complete protection to the chickens from lethal viral challenge. In addition, vaccination with pDNA/D-SPM complex did not induce high antibody titer when compared with naked pDNA. Therefore, it was concluded that DNA vaccination with plasmid internal ribosome entry site-HN/F can be suitable for in ovo application against ND, whereas D-SPM is not recommended for in ovo gene delivery.

Collaboration


Dive into the Hassan Moeini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aini Ideris

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Mohd Hair Bejo

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Khatijah Yusoff

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kamyar Shameli

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Mehdi Rasoli

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge