Hassan Saif
Open University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hassan Saif.
Information Processing and Management | 2016
Hassan Saif; Yulan He; Miriam Fernández; Harith Alani
We propose a semantic sentiment representation of words called SentiCircle.SentiCircle captures the contextual semantic of words from their co-occurrences.SentiCircle updates the sentiment of words based on their contextual semantics.SentiCircle can be used to perform entity- and tweet-level level sentiment analysis. Sentiment analysis on Twitter has attracted much attention recently due to its wide applications in both, commercial and public sectors. In this paper we present SentiCircles, a lexicon-based approach for sentiment analysis on Twitter. Different from typical lexicon-based approaches, which offer a fixed and static prior sentiment polarities of words regardless of their context, SentiCircles takes into account the co-occurrence patterns of words in different contexts in tweets to capture their semantics and update their pre-assigned strength and polarity in sentiment lexicons accordingly. Our approach allows for the detection of sentiment at both entity-level and tweet-level. We evaluate our proposed approach on three Twitter datasets using three different sentiment lexicons to derive word prior sentiments. Results show that our approach significantly outperforms the baselines in accuracy and F-measure for entity-level subjectivity (neutral vs. polar) and polarity (positive vs. negative) detections. For tweet-level sentiment detection, our approach performs better than the state-of-the-art SentiStrength by 4-5% in accuracy in two datasets, but falls marginally behind by 1% in F-measure in the third dataset.
european semantic web conference | 2014
Hassan Saif; Miriam Fernández; Yulan He; Harith Alani
Lexicon-based approaches to Twitter sentiment analysis are gaining much popularity due to their simplicity, domain independence, and relatively good performance. These approaches rely on sentiment lexicons, where a collection of words are marked with fixed sentiment polarities. However, words’ sentiment orientation (positive, neural, negative) and/or sentiment strengths could change depending on context and targeted entities. In this paper we present SentiCircle; a novel lexicon-based approach that takes into account the contextual and conceptual semantics of words when calculating their sentiment orientation and strength in Twitter. We evaluate our approach on three Twitter datasets using three different sentiment lexicons. Results show that our approach significantly outperforms two lexicon baselines. Results are competitive but inconclusive when comparing to state-of-art SentiStrength, and vary from one dataset to another. SentiCircle outperforms SentiStrength in accuracy on average, but falls marginally behind in F-measure.
international semantic web conference | 2014
Hassan Saif; Yulan He; Miriam Fernández; Harith Alani
Most existing approaches to Twitter sentiment analysis assume that sentiment is explicitly expressed through affective words. Nevertheless, sentiment is often implicitly expressed via latent semantic relations, patterns and dependencies among words in tweets. In this paper, we propose a novel approach that automatically captures patterns of words of similar contextual semantics and sentiment in tweets. Unlike previous work on sentiment pattern extraction, our proposed approach does not rely on external and fixed sets of syntactical templates/patterns, nor requires deep analyses of the syntactic structure of sentences in tweets. We evaluate our approach with tweet- and entity-level sentiment analysis tasks by using the extracted semantic patterns as classification features in both tasks. We use 9 Twitter datasets in our evaluation and compare the performance of our patterns against 6 state-of-the-art baselines. Results show that our patterns consistently outperform all other baselines on all datasets by 2.19% at the tweet-level and 7.5% at the entity-level in average F-measure.
european semantic web conference | 2014
Hassan Saif; Yulan He; Miriam Fernández; Harith Alani
Sentiment lexicons for sentiment analysis offer a simple, yet effective way to obtain the prior sentiment information of opinionated words in texts. However, words’ sentiment orientations and strengths often change throughout various contexts in which the words appear. In this paper, we propose a lexicon adaptation approach that uses the contextual semantics of words to capture their contexts in tweet messages and update their prior sentiment orientations and/or strengths accordingly. We evaluate our approach on one state-of-the-art sentiment lexicon using three different Twitter datasets. Results show that the sentiment lexicons adapted by our approach outperform the original lexicon in accuracy and F-measure in two datasets, but give similar accuracy and slightly lower F-measure in one dataset.
european semantic web conference | 2017
Hassan Saif; Thomas Dickinson; Leon Kastler; Miriam Fernández; Harith Alani
From its start, the so-called Islamic State of Iraq and the Levant (ISIL/ISIS) has been successfully exploiting social media networks, most notoriously Twitter, to promote its propaganda and recruit new members, resulting in thousands of social media users adopting a pro-ISIS stance every year. Automatic identification of pro-ISIS users on social media has, thus, become the centre of interest for various governmental and research organisations. In this paper we propose a semantic graph-based approach for radicalisation detection on Twitter. Unlike previous works, which mainly rely on the lexical representation of the content published by Twitter users, our approach extracts and makes use of the underlying semantics of words exhibited by these users to identify their pro/anti-ISIS stances. Our results show that classifiers trained from semantic features outperform those trained from lexical, sentiment, topic and network features by 7.8% on average F1-measure.
international semantic web conference | 2017
Grégoire Burel; Hassan Saif; Harith Alani
When crises hit, many flog to social media to share or consume information related to the event. Social media posts during crises tend to provide valuable reports on affected people, donation offers, help requests, advice provision, etc. Automatically identifying the category of information (e.g., reports on affected individuals, donations and volunteers) contained in these posts is vital for their efficient handling and consumption by effected communities and concerned organisations. In this paper, we introduce Sem-CNN; a wide and deep Convolutional Neural Network (CNN) model designed for identifying the category of information contained in crisis-related social media content. Unlike previous models, which mainly rely on the lexical representations of words in the text, the proposed model integrates an additional layer of semantics that represents the named entities in the text, into a wide and deep CNN network. Results show that the Sem-CNN model consistently outperforms the baselines which consist of statistical and non-semantic deep learning models.
Emotions and Personality in Personalized Services | 2016
Hassan Saif; F. Javier Ortega; Miriam Fernández; Iván Cantador
In this chapter, we review and discuss the state of the art on sentiment analysis in social streams—such as web forums, microblogging systems, and social networks, aiming to clarify how user opinions, affective states, and intended emotional effects are extracted from user generated content, how they are modeled, and how they could be finally exploited. We explain why sentiment analysis tasks are more difficult for social streams than for other textual sources, and entail going beyond classic text-based opinion mining techniques. We show, for example, that social streams may use vocabularies and expressions that exist outside the mainstream of standard, formal languages, and may reflect complex dynamics in the opinions and sentiments expressed by individuals and communities.
international semantic web conference | 2016
Hassan Saif; M.V. Bashevoy; Stephen Taylor; Miriam Fernández; Harith Alani
Sentiment analysis over social streams offers governments and organisations a fast and effective way to monitor the publics’ feelings towards policies, brands, business, etc. In this paper we present SentiCircles, a platform that captures feedback from social media conversations and applies contextual and conceptual sentiment analysis models to extract and summarise sentiment from these conversations. It provides a novel sentiment navigation design where contextual sentiment is captured and presented at term/entity level, enabling a better alignment of positive and negative sentiment to the nature of the public debate.
International Journal of Energy Sector Management | 2016
Victoria S. Uren; Daniel Wright; James Scott; Yulan He; Hassan Saif
he push to widen participation in public consultation suggests social media as an additional mechanism through which to engage the public. Bioenergy companies need to build their capacity to communicate in these new media and to monitor the attitudes of the public and opposition organisations towards energy development projects. Design/methodology/approach This short paper outlines the planning issues bioenergy developments face and the main methods of communication used in the public consultation process in the UK. The potential role of social media in communication with stakeholders is identified. The capacity of sentiment analysis to mine opinions from social media is summarised, and illustrated using a sample of tweets containing the term ‘bioenergy’ Findings Social media have the potential to improve information flows between stakeholders and developers. Sentiment analysis is a viable Purpose The push to widen participation in public consultation suggests social media as an additional mechanism through which to engage the public. Bioenergy companies need to build their capacity to communicate in these new media and to monitor the attitudes of the public and opposition organisations towards energy development projects. Design/methodology/approach This short paper outlines the planning issues bioenergy developments face and the main methods of communication used in the public consultation process in the UK. The potential role of social media in communication with stakeholders is identified. The capacity of sentiment analysis to mine opinions from social media is summarised, and illustrated using a sample of tweets containing the term ‘bioenergy’ Findings Social media have the potential to improve information flows between stakeholders and developers. Sentiment analysis is a viable methodology, which bioenergy companies should be using to measure public opinion in the consultation process. Preliminary analysis shows promising results. Research limitations/implications Analysis is preliminary and based on a small dataset. It is intended only to illustrate the potential of sentiment analysis and not to draw general conclusions about the bioenergy sector. Originality/value Opinion mining, though established in marketing and political analysis, is not yet systematically applied as a planning consultation tool. This is a missed opportunity.
international semantic web conference | 2016
Amparo Elizabeth Cano; Hassan Saif; Harith Alani; Enrico Motta
Characterising social media topics often requires new features to be continuously taken into account, and thus increasing the need for classifier retraining. One challenging aspect is the emergence of ambiguous features, which can affect classification performance. In this paper we investigate the impact of the use of ambiguous features in a topic classification task, and introduce the Semantic Topic Compass STC framework, which characterises ambiguity in a topics feature space. STC makes use of topic priors derived from structured knowledge sources to facilitate the semantic feature grading of a topic. Our findings demonstrate the proposed framework offers competitive boosts in performance across all datasets.