Hassanul G. Choudhury
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hassanul G. Choudhury.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Hassanul G. Choudhury; Zhen Tong; Indran Mathavan; Yanyan Li; So Iwata; Séverine Zirah; Sylvie Rebuffat; Hendrik W. van Veen; Konstantinos Beis
Significance ATP-binding cassette (ABC) exporters transport substrates by an alternating access mechanism that is driven by ATP binding and hydrolysis. The general mechanism is a motion from an inward to an outward state, with a different intertwining of the half-transporters in both states. In this study we determined the function and crystal structure of the ABC exporter McjD that exports the antibacterial peptide microcin J25. Our structure represents a novel nucleotide-bound, outward-occluded state. It does not possess subunit intertwining and shows a well-defined binding cavity that is closed to all sides, consistent with it being an intermediate between the inward- and outward-facing state. Our structure provides valuable insights in a transition state of an ABC exporter. Enterobacteriaceae produce antimicrobial peptides for survival under nutrient starvation. Microcin J25 (MccJ25) is an antimicrobial peptide with a unique lasso topology. It is secreted by the ATP-binding cassette (ABC) exporter McjD, which ensures self-immunity of the producing strain through efficient export of the toxic mature peptide from the cell. Here we have determined the crystal structure of McjD from Escherichia coli at 2.7-Å resolution, which is to the authors’ knowledge the first structure of an antibacterial peptide ABC transporter. Our functional and biochemical analyses demonstrate McjD-dependent immunity to MccJ25 through efflux of the peptide. McjD can directly bind MccJ25 and displays a basal ATPase activity that is stimulated by MccJ25 in both detergent solution and proteoliposomes. McjD adopts a new conformation, termed nucleotide-bound outward occluded. The new conformation defines a clear cavity; mutagenesis and ligand binding studies of the cavity have identified Phe86, Asn134, and Asn302 as important for recognition of MccJ25. Comparisons with the inward-open MsbA and outward-open Sav1866 structures show that McjD has structural similarities with both states without the intertwining of transmembrane (TM) helices. The occluded state is formed by rotation of TMs 1 and 2 toward the equivalent TMs of the opposite monomer, unlike Sav1866 where they intertwine with TMs 3–6 of the opposite monomer. Cysteine cross-linking studies on the McjD dimer in inside-out membrane vesicles of E. coli confirmed the presence of the occluded state. We therefore propose that the outward-occluded state represents a transition intermediate between the outward-open and inward-open conformation of ABC exporters.
Journal of Bacteriology | 2013
Giulia Runti; Maria del Carmen Lopez Ruiz; Tatiana Stoilova; Rohanah Hussain; Matthew Jennions; Hassanul G. Choudhury; Monica Benincasa; Renato Gennaro; Konstantinos Beis; Marco Scocchi
SbmA is an inner membrane protein of Gram-negative bacteria that is involved in the internalization of glycopeptides and prokaryotic and eukaryotic antimicrobial peptides, as well as of peptide nucleic acid (PNA) oligomers. The SbmA homolog BacA is required for the development of Sinorhizobium meliloti bacteroids within plant cells and favors chronic infections with Brucella abortus and Mycobacterium tuberculosis in mice. Here, we investigated functional features of SbmA/BacA using the proline-rich antimicrobial peptide Bac7(1-35) as a substrate. Circular dichroism and affinity chromatography studies were used to investigate the ability of SbmA to bind the peptide, and a whole-cell transport assay with fluorescently labeled peptide allowed the determination of transport kinetic parameters with a calculated Km value of 6.95 ± 0.89 μM peptide and a Vmax of 53.91 ± 3.17 nmol/min/mg SbmA. Use of a bacterial two-hybrid system coupled to SEC-MALLS (size exclusion chromatography coupled with multiangle laser light scattering) analyses established that SbmA is a homodimer in the membrane, and treatment of the cells with arsenate or ionophores indicated that the peptide transport mediated by SbmA is driven by the electrochemical gradient. Overall, these results shed light on the SbmA-mediated internalization of peptide substrates and suggest that the transport of an unknown substrate(s) represents the function of this protein.
Nature Chemical Biology | 2014
Indran Mathavan; Séverine Zirah; Shahid Mehmood; Hassanul G. Choudhury; Christophe Goulard; Yanyan Li; Carol V. Robinson; Sylvie Rebuffat; Konstantinos Beis
The lasso peptide microcin J25 is known to hijack the siderophore receptor FhuA for initiating internalization. Here, we provide the first structural evidence on the recognition mechanism and our biochemical data show that another closely related lasso peptide cannot interact with FhuA. Our work provides an explanation on the narrow activity spectrum of lasso peptides and opens the path to the development of new antibacterials.
Acta Crystallographica Section D-biological Crystallography | 2015
Danny Axford; James Foadi; Nien-Jen Hu; Hassanul G. Choudhury; So Iwata; Konstantinos Beis; Gwyndaf Evans; Yilmaz Alguel
The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated.
FEBS Letters | 2014
Chiara Lee; Hae Joo Kang; Anna Hjelm; Abdul Aziz Qureshi; Emmanuel Nji; Hassanul G. Choudhury; Konstantinos Beis; Jan-Willem de Gier; David Drew
Optimising membrane protein production yields in Escherichia coli can be time‐ and resource‐consuming. Here, we present a simple and effective Membrane protein Single shot amplification recipe: MemStar. This one‐shot amplification recipe is based on the E. coli strain Lemo21(DE3), the PASM‐5052 auto‐induction medium and, contradictorily, an IPTG induction step. Using MemStar, production yields for most bacterial membrane proteins tested were improved to reach an average of 5 mg L−1 per OD600 unit, which is significantly higher than yields obtained with other common production strategies. With MemStar, we have been able to obtain new structural information for several transporters, including the sodium/proton antiporter NapA.
Biochemical Journal | 2011
Hassanul G. Choudhury; Alexander D. Cameron; So Iwata; Konstantinos Beis
The oxyanion derivatives of the chalcogens tellurium and selenium are toxic to living organisms even at very low levels. Bacteria have developed mechanisms to overcome their toxicity by methylating them. The structure of TehB from Escherichia coli has been determined in the presence of the cofactor analogues SAH (S-adenosylhomocysteine) and sinefungin (a non-hydrolysable form of S-adenosyl-L-methionine) at 1.48 Å (1 Å=0.1 nm) and 1.9 Å respectively. Interestingly, our kinetic data show that TehB does not discriminate between selenium or tellurite oxyanions, making it a very powerful detoxifying protein. Analysis of the active site has identified three conserved residues that are capable of binding and orientating the metals for nucleophilic attack: His176, Arg177 and Arg184. Mutagenesis studies revealed that the H176A and R184A mutants retained most of their activity, whereas the R177A mutant had 65% of its activity abolished. Based on the structure and kinetic data we propose an SN2 nucleophilic attack reaction mechanism. These data provide the first molecular understanding of the detoxification of chalcogens by bacteria.
Journal of Biological Chemistry | 2016
Shahid Mehmood; Corradi; Hassanul G. Choudhury; Rohanah Hussain; Becker P; Danny Axford; Séverine Zirah; Sylvie Rebuffat; Tieleman Dp; Carol V. Robinson; Konstantinos Beis
The lipid bilayer is a dynamic environment that consists of a mixture of lipids with different properties that regulate the function of membrane proteins; these lipids are either annular, masking the protein hydrophobic surface, or specific lipids, essential for protein function. In this study, using tandem mass spectrometry, we have identified specific lipids associated with the Escherichia coli ABC transporter McjD, which translocates the antibacterial peptide MccJ25. Using non-denaturing mass spectrometry, we show that McjD in complex with MccJ25 survives the gas phase. Partial delipidation of McjD resulted in reduced ATPase activity and thermostability as shown by circular dichroism, both of which could be restored upon addition of defined E. coli lipids. We have resolved a phosphatidylglycerol lipid associated with McjD at 3.4 Å resolution, whereas molecular dynamic simulations carried out in different lipid environments assessed the binding of specific lipids to McjD. Combined, our data show a synergistic effect of zwitterionic and negatively charged lipids on the activity of McjD; the zwitterionic lipids provide structural stability to McjD, whereas the negatively charged lipids are essential for its function.
Biochemistry | 2015
Ruo-Xu Gu; Valentina Corradi; Gurpreet Singh; Hassanul G. Choudhury; Konstantinos Beis; D. Peter Tieleman
The ATP binding cassette (ABC) transporters form one of the largest protein superfamilies. They use the energy of ATP hydrolysis to transport chemically diverse ligands across membranes. An alternating access mechanism in which the transporter switches between inward- and outward-facing conformations has been proposed to describe the translocation process. One of the main open questions in this process is the degree of opening of the transporter at different stages of the transport cycle, as crystal structures and biochemical data have suggested a wide range of distances between nucleotide binding domains. Recently, the crystal structure of McjD, an antibacterial peptide ABC transporter from Escherichia coli, revealed a new occluded intermediate state of the transport cycle. The transmembrane domain is closed on both sides of the membrane, forming a cavity that can accommodate its ligand, MccJ25, a lasso peptide of 21 amino acids. In this work, we investigate the degree of opening of the transmembrane cavity required for ligand translocation. By means of steered molecular dynamics simulations, the ligand was pulled from the internal cavity to the extracellular side. This resulted in an outward-facing state. Comparison with existing outward-facing crystal structures shows a smaller degree of opening in the simulations, suggesting that the large conformational changes in some crystal structures may not be necessary even for a large substrate like MccJ25.
Protein Science | 2013
Hassanul G. Choudhury; Konstantinos Beis
Bacterial response regulators (RRs) can regulate the expression of genes that confer antibiotic resistance; they contain a receiver and an effector domain and their ability to bind DNA is based on the dimerization state. This is triggered by phosphorylation of the receiver domain by a kinase. However, even in the absence of phosphorylation RRs can exist in equilibrium between monomers and dimers with phosphorylation shifting the equilibrium toward the dimer form. We have determined the crystal structure of the unphosphorylated dimeric BaeR from Escherichia coli. The dimer interface is formed by a domain swap at the receiver domain. In comparison with the unphosphorylated dimeric PhoP from Mycobacterium tuberculosis, BaeR displays an asymmetry of the effector domains.
The EMBO Journal | 2017
Kiran Bountra; Gregor Hagelueken; Hassanul G. Choudhury; Valentina Corradi; Kamel El Omari; Armin Wagner; Indran Mathavan; Séverine Zirah; Weixiao Yuan Wahlgren; D. Peter Tieleman; Olav Schiemann; Sylvie Rebuffat; Konstantinos Beis
Certain pathogenic bacteria produce and release toxic peptides to ensure either nutrient availability or evasion from the immune system. These peptides are also toxic to the producing bacteria that utilize dedicated ABC transporters to provide self‐immunity. The ABC transporter McjD exports the antibacterial peptide MccJ25 in Escherichia coli. Our previously determined McjD structure provided some mechanistic insights into antibacterial peptide efflux. In this study, we have determined its structure in a novel conformation, apo inward‐occluded and a new nucleotide‐bound state, high‐energy outward‐occluded intermediate state, with a defined ligand binding cavity. Predictive cysteine cross‐linking in E. coli membranes and PELDOR measurements along the transport cycle indicate that McjD does not undergo major conformational changes as previously proposed for multi‐drug ABC exporters. Combined with transport assays and molecular dynamics simulations, we propose a novel mechanism for toxic peptide ABC exporters that only requires the transient opening of the cavity for release of the peptide. We propose that shielding of the cavity ensures that the transporter is available to export the newly synthesized peptides, preventing toxic‐level build‐up.