Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hatef Sadeghi is active.

Publication


Featured researches published by Hatef Sadeghi.


Nature Communications | 2015

A quantum circuit rule for interference effects in single-molecule electrical junctions

David Zsolt Manrique; Cancan Huang; Masoud Baghernejad; Xiaotao Zhao; Oday A. Al-Owaedi; Hatef Sadeghi; Veerabhadrarao Kaliginedi; Wenjing Hong; Murat Gulcur; Thomas Wandlowski; Martin R. Bryce; Colin J. Lambert

A quantum circuit rule for combining quantum interference effects in the conductive properties of oligo(phenyleneethynylene) (OPE)-type molecules possessing three aromatic rings was investigated both experimentally and theoretically. Molecules were of the type X-Y-X, where X represents pyridyl anchors with para (p), meta (m) or ortho (o) connectivities and Y represents a phenyl ring with p and m connectivities. The conductances GXmX (GXpX) of molecules of the form X-m-X (X-p-X), with meta (para) connections in the central ring, were predominantly lower (higher), irrespective of the meta, para or ortho nature of the anchor groups X, demonstrating that conductance is dominated by the nature of quantum interference in the central ring Y. The single-molecule conductances were found to satisfy the quantum circuit rule Gppp/Gpmp=Gmpm/Gmmm. This demonstrates that the contribution to the conductance from the central ring is independent of the para versus meta nature of the anchor groups.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Conductance enlargement in picoscale electroburnt graphene nanojunctions

Hatef Sadeghi; Jan A. Mol; Chit Siong Lau; G. Andrew D. Briggs; Jamie H. Warner; Colin J. Lambert

Significance Continuation of Moore’s law to the sub–10-nm scale requires the development of new technologies for creating electrode nanogaps, in architectures which allow a third electrostatic gate. Electroburnt graphene junctions (EGNs) have the potential to fulfill this need, provided their properties at the moment of gap formation can be understood and controlled. In contrast with mechanically controlled break junctions, whose conductance decreases monotonically as the junction approaches rupture, we show that EGNs exhibit a surprising conductance enlargement just before breaking, which signals the formation of a picoscale current path formed from a single sp2 bond. Just as Schottky barriers are a common feature of semiconductor interfaces, conductance enlargement is a common property of EGNs and will be unavoidably encountered by all research groups working on the development of this new technology. Provided the electrical properties of electroburnt graphene junctions can be understood and controlled, they have the potential to underpin the development of a wide range of future sub-10-nm electrical devices. We examine both theoretically and experimentally the electrical conductance of electroburnt graphene junctions at the last stages of nanogap formation. We account for the appearance of a counterintuitive increase in electrical conductance just before the gap forms. This is a manifestation of room-temperature quantum interference and arises from a combination of the semimetallic band structure of graphene and a cross-over from electrodes with multiple-path connectivity to single-path connectivity just before breaking. Therefore, our results suggest that conductance enlargement before junction rupture is a signal of the formation of electroburnt junctions, with a picoscale current path formed from a single sp2 bond.


Scientific Reports | 2015

Enhanced Thermoelectric Efficiency of Porous Silicene Nanoribbons

Hatef Sadeghi; Sara Sangtarash; Colin J. Lambert

There is a critical need to attain new sustainable materials for direct upgrade of waste heat to electrical energy via the thermoelectric effect. Here we demonstrate that the thermoelectric performance of silicene nanoribbons can be improved dramatically by introducing nanopores and tuning the Fermi energy. We predict that values of electronic thermoelectric figure of merit ZTe up to 160 are achievable, provided the Fermi energy is located approximately 100 meV above the charge neutrality point. Including the effect of phonons yields a value for the full figure of merit of ZT = 3.5. Furthermore the sign of the thermopower S can be varied with achievable values as high as S = +/− 500 μV/K. As a method of tuning the Fermi energy, we analyse the effect of doping the silicene with either a strong electron donor (TTF) or a strong electron acceptor (TCNQ) and demonstrate that adsorbed layers of the former increases ZTe to a value of 3.1, which is insensitive to temperature over the range 100 K – 400 K. This combination of a high, temperature-insensitive ZTe, and the ability to choose the sign of the thermopower identifies nanoporous silicene as an ideal thermoelectric material with the potential for unprecedented performance.


Nature Communications | 2016

Functionalization mediates heat transport in graphene nanoflakes.

Haoxue Han; Yong Zhang; Nan Wang; Majid Kabiri Samani; Yuxiang Ni; Zainelabideen Y. Mijbil; Michael Edwards; Shiyun Xiong; Kimmo Sääskilahti; Murali Murugesan; Yifeng Fu; Lilei Ye; Hatef Sadeghi; Steven W. D. Bailey; Yuriy A. Kosevich; Colin J. Lambert; Johan Liu; Sebastian Volz

The high thermal conductivity of graphene and few-layer graphene undergoes severe degradations through contact with the substrate. Here we show experimentally that the thermal management of a micro heater is substantially improved by introducing alternative heat-escaping channels into a graphene-based film bonded to functionalized graphene oxide through amino-silane molecules. Using a resistance temperature probe for in situ monitoring we demonstrate that the hotspot temperature was lowered by ∼28 °C for a chip operating at 1,300 W cm−2. Thermal resistance probed by pulsed photothermal reflectance measurements demonstrated an improved thermal coupling due to functionalization on the graphene–graphene oxide interface. Three functionalization molecules manifest distinct interfacial thermal transport behaviour, corroborating our atomistic calculations in unveiling the role of molecular chain length and functional groups. Molecular dynamics simulations reveal that the functionalization constrains the cross-plane phonon scattering, which in turn enhances in-plane heat conduction of the bonded graphene film by recovering the long flexural phonon lifetime.


Nano Letters | 2016

Redox-Dependent Franck-Condon Blockade and Avalanche Transport in a Graphene-Fullerene Single-Molecule Transistor.

Chit Siong Lau; Hatef Sadeghi; Gregory Rogers; Sara Sangtarash; Panagiotis Dallas; Kyriakos Porfyrakis; Jamie H. Warner; Colin J. Lambert; G. Andrew D. Briggs; Jan A. Mol

We report transport measurements on a graphene-fullerene single-molecule transistor. The device architecture where a functionalized C60 binds to graphene nanoelectrodes results in strong electron-vibron coupling and weak vibron relaxation. Using a combined approach of transport spectroscopy, Raman spectroscopy, and DFT calculations, we demonstrate center-of-mass oscillations, redox-dependent Franck-Condon blockade, and a transport regime characterized by avalanche tunnelling in a single-molecule transistor.


Nano Letters | 2015

Oligoyne Molecular Junctions for Efficient Room Temperature Thermoelectric Power Generation.

Hatef Sadeghi; Sara Sangtarash; Colin J. Lambert

Understanding phonon transport at a molecular scale is fundamental to the development of high-performance thermoelectric materials for the conversion of waste heat into electricity. We have studied phonon and electron transport in alkane and oligoyne chains of various lengths and find that, due to the more rigid nature of the latter, the phonon thermal conductances of oligoynes are counterintuitively lower than that of the corresponding alkanes. The thermal conductance of oligoynes decreases monotonically with increasing length, whereas the thermal conductance of alkanes initially increases with length and then decreases. This difference in behavior arises from phonon filtering by the gold electrodes and disappears when higher-Debye-frequency electrodes are used. Consequently a molecule that better transmits higher-frequency phonon modes, combined with a low-Debye-frequency electrode that filters high-energy phonons is a viable strategy for suppressing phonon transmission through the molecular junctions. The low thermal conductance of oligoynes, combined with their higher thermopower and higher electrical conductance lead to a maximum thermoelectric figure of merit of ZT = 1.4, which is several orders of magnitude higher than that of alkanes.


Journal of Physical Chemistry B | 2014

Graphene sculpturene nanopores for DNA nucleobase sensing

Hatef Sadeghi; L. Algaragholy; Thomas Pope; Simon Bailey; David Visontai; David Zsolt Manrique; Jaime Ferrer; Víctor M. García-Suárez; Sara Sangtarash; Colin J. Lambert

To demonstrate the potential of nanopores in bilayer graphene for DNA sequencing, we computed the current-voltage characteristics of a bilayer graphene junction containing a nanopore and found that they change significantly when nucleobases are transported through the pore. To demonstrate the sensitivity and selectivity of example devices, we computed the probability distribution PX(β) of the quantity β representing the change in the logarithmic current through the pore due to the presence of a nucleobase X (X = adenine, thymine, guanine, or cytosine). We quantified the selectivity of the bilayer-graphene nanopores by showing that PX(β) exhibits distinct peaks for each base X. To demonstrate that such discriminating sensing is a general feature of bilayer nanopores, the well-separated positions of these peaks were shown to be present for different pores, with alternative examples of electrical contacts.


Applied Physics Letters | 2014

Silicene-based DNA nucleobase sensing

Hatef Sadeghi; S. W. Bailey; Colin J. Lambert

We propose a DNA sequencing scheme based on silicene nanopores. Using first principles theory, we compute the electrical properties of such pores in the absence and presence of nucleobases. Within a two-terminal geometry, we analyze the current-voltage relation in the presence of nucleobases with various orientations. We demonstrate that when nucleobases pass through a pore, even after sampling over many orientations, changes in the electrical properties of the ribbon can be used to discriminate between bases.


Journal of the American Chemical Society | 2015

Searching the Hearts of Graphene-like Molecules for Simplicity, Sensitivity, and Logic

Sara Sangtarash; Cancan Huang; Hatef Sadeghi; Gleb Sorohhov; Juerg Hauser; Thomas Wandlowski; Wenjing Hong; Silvio Decurtins; Shi-Xia Liu; Colin J. Lambert

If quantum interference patterns in the hearts of polycyclic aromatic hydrocarbons could be isolated and manipulated, then a significant step toward realizing the potential of single-molecule electronics would be achieved. Here we demonstrate experimentally and theoretically that a simple, parameter-free, analytic theory of interference patterns evaluated at the mid-point of the HOMO-LUMO gap (referred to as M-functions) correctly predicts conductance ratios of molecules with pyrene, naphthalene, anthracene, anthanthrene, or azulene hearts. M-functions provide new design strategies for identifying molecules with phase-coherent logic functions and enhancing the sensitivity of molecular-scale interferometers.


Beilstein Journal of Nanotechnology | 2015

Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons

Hatef Sadeghi; Sara Sangtarash; Colin J. Lambert

Summary We demonstrate that thermoelectric properties of graphene nanoribbons can be dramatically improved by introducing nanopores. In monolayer graphene, this increases the electronic thermoelectric figure of merit ZT e from 0.01 to 0.5. The largest values of ZT e are found when a nanopore is introduced into bilayer graphene, such that the current flows from one layer to the other via the inner surface of the pore, for which values as high as ZT e = 2.45 are obtained. All thermoelectric properties can be further enhanced by tuning the Fermi energy of the leads.

Collaboration


Dive into the Hatef Sadeghi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Razali Ismail

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. T. Ahmadi

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

S. M. Mousavi

Universiti Teknologi Malaysia

View shared research outputs
Researchain Logo
Decentralizing Knowledge