Hatsuho Mamata
Brigham and Women's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hatsuho Mamata.
Medical Image Analysis | 2002
Carl-Fredrik Westin; Stephan E. Maier; Hatsuho Mamata; Arya Nabavi; Ferenc A. Jolesz; Ron Kikinis
This paper presents processing and visualization techniques for Diffusion Tensor Magnetic Resonance Imaging (DT-MRI). In DT-MRI, each voxel is assigned a tensor that describes local water diffusion. The geometric nature of diffusion tensors enables us to quantitatively characterize the local structure in tissues such as bone, muscle, and white matter of the brain. This makes DT-MRI an interesting modality for image analysis. In this paper we present a novel analytical solution to the Stejskal-Tanner diffusion equation system whereby a dual tensor basis, derived from the diffusion sensitizing gradient configuration, eliminates the need to solve this equation for each voxel. We further describe decomposition of the diffusion tensor based on its symmetrical properties, which in turn describe the geometry of the diffusion ellipsoid. A simple anisotropy measure follows naturally from this analysis. We describe how the geometry or shape of the tensor can be visualized using a coloring scheme based on the derived shape measures. In addition, we demonstrate that human brain tensor data when filtered can effectively describe macrostructural diffusion, which is important in the assessment of fiber-tract organization. We also describe how white matter pathways can be monitored with the methods introduced in this paper. DT-MRI tractography is useful for demonstrating neural connectivity (in vivo) in healthy and diseased brain tissue.
Journal of Magnetic Resonance Imaging | 2005
Hatsuho Mamata; Ferenc A. Jolesz; Stephan E. Maier
To present the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) change with age in the normal spinal cord and in cervical spondylosis.
Magnetic Resonance in Medicine | 2004
Stephan E. Maier; Sridhar Vajapeyam; Hatsuho Mamata; Carl-Fredrik Westin; Ferenc A. Jolesz; Robert V. Mulkern
Several studies have shown that in tissues over an extended range of b‐factors, the signal decay deviates significantly from the basic monoexponential model. The true nature of this departure has to date not been identified. For the current study, line scan diffusion images of brain suitable for biexponential diffusion tensor analysis were acquired in normal subjects on a clinical MR system. For each of six noncollinear directions, 32 images with b‐factors ranging from 5 to 5000 s/mm2 were collected. Biexponential fits yielded parameter maps for a fast and a slow diffusion component. A subset of the diffusion data, consisting of the images obtained at the conventional range of b‐factors between 5 and 972 s/mm2, was used for monoexponential diffusion tensor analysis. Fractional anisotropy (FA) of the fast‐diffusion component and the monoexponential fit exhibited no significant difference. FA of the slow‐diffusion biexponential component was significantly higher, particularly in areas of lower fiber density. The principal diffusion directions for the two biexponential components and the monoexponential solution were largely the same and in agreement with known fiber tracts. The second and third diffusion eigenvector directions also appeared to be aligned, but they exhibited significant deviations in localized areas. Magn Reson Med 51:321–330, 2004.
Annals of the New York Academy of Sciences | 2005
Stephan E. Maier; Hatsuho Mamata
The spinal cord is an important part of the nervous system and provides the connection of the brain with the periphery. It consists not only of a large number of longitudinal fibers, but also contains collateral fibers and a central gray matter structure, which are part of autonomous circuits. Magnetic resonance diffusion tensor imaging can reveal this complex fiber architecture in great detail. This report summarizes the normal findings for ADC, diffusion anisotropy, and diffusion eigenvector directions in the spinal cord. Sagittal and axial diffusion‐weighted images of the spinal cord were obtained with line scan diffusion imaging (LSDI) in adults, children, infants, and a spinal cord specimen.
Investigative Radiology | 2005
Seung-Schik Yoo; Hae-Jeong Park; Janet S. Soul; Hatsuho Mamata; HyunWook Park; Carl-Fredrik Westin; Haim Bassan; Adré J. du Plessis; Richard L. Robertson; Stephan E. Maier; Steven A. Ringer; Joseph J. Volpe; Gary P. Zientara
Objective:The goal of this study was to test the feasibility of visualizing a 3-dimensional structure of cerebral white matter fiber tracts in preterm infants, postconceptional age (PCA) 28 weeks to term, by using volumetric diffusion tensor magnetic resonance imaging (DTI) data. Materials and Method:We combined tractography algorithms and visualization methods, currently available for adult DTI data, to trace the pixelated principal direction of a diffusion tensor originating from regions-of-interest with high fractional anisotropy. Consequently, white matter fiber bundles from the genu and the splenium of corpus callosum, the corticospinal tracts, the inferior fronto-occipital fasciculi, and optic radiations were visualized. Results:Our results suggest that major white matter tracts of preterm infant brains, with PCAs ranging from 28 weeks to term (40 weeks old), can be successfully visualized despite the small brain volume and low anisotropy. Conclusion:The feasibility of fiber tractography in preterm neonates with DTI may add a new dimension in detection and characterization of white matter injuries of preterm infants.
Neurochemistry International | 2004
Hatsuho Mamata; Ferenc A. Jolesz; Stephan E. Maier
Diffusion-weighted magnetic resonance imaging (MRI) provides information about tissue water diffusion. Diffusion anisotropy, which can be measured with diffusion tensor MRI, is a quantitative measure of the directional dependence of the diffusion restriction that is introduced by biological structures such as nerve fibers. Diffusion tensor MRI data was obtained in the brain, brain stem, and cervical spinal cord. For each region, scans were performed in four normal volunteers. Fractional anisotropy (FA), an index of diffusion anisotropy, was measured within regions of interest located in the corpus callosum, capsula interna, thalamus, caudate nucleus, putamen, brain cortex, pyramidal tract of the medulla, accessory olivary nucleus, dorsal olivary nucleus, inferior olivary nucleus, spinal white and gray matter. The highest FA value was measured in the corpus callosum (81 +/- 3%). The values of the other areas decreased in the following order: pyramidal tract in the medulla (72 +/- 1%), spinal white matter (65 +/- 4%), capsula interna (62 +/- 3%), accessory olivary nucleus (36 +/- 2%), spinal gray matter (35 +/- 5%), dorsal olivary nucleus in the medulla (29 +/- 2%), thalamus (28 +/- 2%), inferior olivary nucleus (15 +/- 2%), putamen (13 +/- 2%), caudate nucleus (13 +/- 2%), and brain cortex (9 +/- 1%). Our results indicate that the underlying fiber architecture, fiber density, and uniformity of nerve fiber direction affect anisotropy values of the various structures. Characterization of various central nervous system structures with diffusion anisotropy is possible and may be useful to monitor degenerative diseases in the central nervous system.
Journal of Neuroimaging | 2015
Sonia Pujol; William M. Wells; Carlo Pierpaoli; C. Brun; James C. Gee; Guang Cheng; Baba C. Vemuri; Olivier Commowick; Sylvain Prima; Aymeric Stamm; Maged Goubran; Ali R. Khan; Terry M. Peters; Peter F. Neher; Klaus H. Maier-Hein; Yundi Shi; Antonio Tristán-Vega; Gopalkrishna Veni; Ross T. Whitaker; Martin Styner; Carl-Fredrik Westin; Sylvain Gouttard; Isaiah Norton; Laurent Chauvin; Hatsuho Mamata; Guido Gerig; Arya Nabavi; Alexandra J. Golby; Ron Kikinis
Diffusion tensor imaging (DTI) tractography reconstruction of white matter pathways can help guide brain tumor resection. However, DTI tracts are complex mathematical objects and the validity of tractography‐derived information in clinical settings has yet to be fully established. To address this issue, we initiated the DTI Challenge, an international working group of clinicians and scientists whose goal was to provide standardized evaluation of tractography methods for neurosurgery. The purpose of this empirical study was to evaluate different tractography techniques in the first DTI Challenge workshop.
Journal of Magnetic Resonance Imaging | 2001
Yoshiaki Mamata; Hatsuho Mamata; Arya Nabavi; Daniel F. Kacher; Richard S. Pergolizzi; Richard B. Schwartz; Ron Kikinis; Ferenc A. Jolesz; Stephan E. Maier
Intraoperative line scan diffusion imaging (LSDI) on a 0.5 Tesla interventional MRI was performed during neurosurgery in three patients. Diffusion trace images were obtained in acute ischemic cases. Scan time per slice was 46 seconds and 94 seconds, respectively, for diffusion tensor images. Diagnosis of acutely developed vascular occlusion was confirmed with follow‐up scans. White matter tracts were displayed with the principal eigenvectors and provided guidance for the tumor surgery. In all cases, the diagnostic utility of LSDI was established. J. Magn. Reson. Imaging 2001;13:115–119.
medical image computing and computer assisted intervention | 2003
Ion-Florin Talos; Lauren J. O’Donnell; Carl-Fredrick Westin; Simon K. Warfield; William M. Wells; Seung-Schik Yoo; Lawrence P. Panych; Alexandra J. Golby; Hatsuho Mamata; Stefan S. Maier; Peter Ratiu; Charles R. G. Guttmann; Peter McL. Black; Ferenc A. Jolesz; Ron Kikinis
In order to achieve its main goal of maximal tumor removal while avoiding postoperative neurologic deficits, neuro-oncological surgery is strongly dependent on image guidance. Among all currently available imaging modalities, MRI provides the best anatomic detail and is highly sensitive for intracranial pathology. However, conventional MRI does not detect the exact location of white matter tracts or areas of cortical activation. This essential information can be obtained non-invasively by means of diffusion tensor MRI (DT-MRI) and functional MRI (fMRI) respectively. Here we present our initial experience with fMRI and DT-MRI for surgical planning and guidance in ten brain tumor cases.
NeuroImage | 2006
Hatsuho Mamata; Umberto De Girolami; W. Scott Hoge; Ferenc A. Jolesz; Stephan E. Maier
Diffusion tensor magnetic resonance imaging provides structural information about nerve fiber tissue. The first eigenvector of the diffusion tensor is aligned with the nerve fibers, i.e., longitudinally in the spinal cord. The underlying hypothesis of this study is that the presence of collateral nerve fibers running orthogonal to the longitudinal fibers results in an orderly arrangement of the second eigenvectors. Magnetic resonance diffusion tensor scans were performed with line scan diffusion imaging on a clinical MR scanner. Axial sections were scanned in a human cervical spinal cord specimen at 625 microm resolution and the cervical spinal cord of four normal volunteers at 1250 microm resolution. The spinal cord specimen was fixed and stained for later light microscopy of the collateral fiber architecture at 0.53 microm resolution. Diffusion measured by MR was found to be anisotropic for both white and gray matter areas of the spinal cord specimen; the average fractional anisotropy (FA) was 0.63 +/- 0.09 (diffusion eigenvalues lambda1 0.38 +/- 0.05 micros/mm2, lambda2 0.14 +/- 0.03 micros/mm2, lambda3 0.10 +/- 0.03 micros/mm2) in white matter and 0.27 +/- 0.04 (lambda1 0.36 +/- 0.04 micros/mm2, lambda2 0.28 +/- 0.03 micros/mm2, lambda3 0.21 +/- 0.04 micros/mm2 in gray matter. The normal-volunteer FA values were similar, i.e., 0.66 +/- 0.04 (lambda1 1.66 +/- 0.14 micros/mm2, lambda2 0.55 +/- 0.02 micros/mm2, lambda3 0.40 +/- 0.01 micros/mm2) in white matter and 0.35 +/- 0.03 (lambda1 1.14 +/- 0.07 micros/mm2, lambda2 0.70 +/- 0.03 micros/mm2, lambda3 0.58 +/- 0.02 micros/mm2) in gray matter. The first eigenvector pointed, as expected, in the longitudinal direction. The second eigenvector directions exhibited a striking arrangement, consistent with the distribution of interconnecting collateral nerve fibers discerned on the histology section. This finding was confirmed for the specimen by quantitative pixel-wise comparison of second eigenvector directions and collateral fiber directions assessed on light microscopy image data. Diffusion tensor MRI can reveal non-invasively and in great detail the intricate fiber architecture of the human spinal cord.