Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haya Abu Ghazaleh is active.

Publication


Featured researches published by Haya Abu Ghazaleh.


FEBS Letters | 2014

RASSF tumor suppressor gene family: Biological functions and regulation

Natalia Volodko; Marilyn Gordon; Mohamed Salla; Haya Abu Ghazaleh; Shairaz Baksh

Genetic changes through allelic loss and nucleic acid or protein modifications are the main contributors to loss of function of tumor suppressor proteins. In particular, epigenetic silencing of genes by promoter hypermethylation is associated with increased tumor severity and poor survival. The RASSF (Ras association domain family) family of proteins consists of 10 members, many of which are tumor suppressor proteins that undergo loss of expression through promoter methylation in numerous types of cancers such as leukemia, melanoma, breast, prostate, neck, lung, brain, colorectal and kidney cancers. In addition to their tumor suppressor function, RASSF proteins act as scaffolding agents in microtubule stability, regulate mitotic cell division, modulate apoptosis, control cell migration and cell adhesion, and modulate NFκB activity and the duration of inflammation. The ubiquitous functions of these proteins highlight their importance in numerous physiological pathways. In this review, we will focus on the biological roles of the RASSF family members and their regulation.


PLOS ONE | 2013

The tumor suppressor gene, RASSF1A, is essential for protection against inflammation -induced injury.

Marilyn Gordon; Mohamed El-Kalla; Yuewen Zhao; Yahya Fiteih; Jennifer Law; Natalia Volodko; Anwar Mohamed; Ayman O.S. El-Kadi; Lei Liu; Jeff Odenbach; Aducio Thiesen; Christina Onyskiw; Haya Abu Ghazaleh; Jikyoung Park; Sean Bong Lee; Victor C. Yu; Carlos Fernandez-Patron; R. Todd Alexander; Eytan Wine; Shairaz Baksh

Ras association domain family protein 1A (RASSF1A) is a tumor suppressor gene silenced in cancer. Here we report that RASSF1A is a novel regulator of intestinal inflammation as Rassf1a+/−, Rassf1a−/− and an intestinal epithelial cell specific knockout mouse (Rassf1a IEC-KO) rapidly became sick following dextran sulphate sodium (DSS) administration, a chemical inducer of colitis. Rassf1a knockout mice displayed clinical symptoms of inflammatory bowel disease including: increased intestinal permeability, enhanced cytokine/chemokine production, elevated nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) activity, elevated colonic cell death and epithelial cell injury. Furthermore, epithelial restitution/repair was inhibited in DSS-treated Rassf1a−/− mice with reduction of several makers of proliferation including Yes associated protein (YAP)-driven proliferation. Surprisingly, tyrosine phosphorylation of YAP was detected which coincided with increased nuclear p73 association, Bax-driven epithelial cell death and p53 accumulation resulting in enhanced apoptosis and poor survival of DSS-treated Rassf1a knockout mice. We can inhibit these events and promote the survival of DSS-treated Rassf1a knockout mice with intraperitoneal injection of the c-Abl and c-Abl related protein tyrosine kinase inhibitor, imatinib/gleevec. However, p53 accumulation was not inhibited by imatinib/gleevec in the Rassf1a−/− background which revealed the importance of p53-dependent cell death during intestinal inflammation. These observations suggest that tyrosine phosphorylation of YAP (to drive p73 association and up-regulation of pro-apoptotic genes such as Bax) and accumulation of p53 are consequences of inflammation-induced injury in DSS-treated Rassf1a−/− mice. Mechanistically, we can detect robust associations of RASSF1A with membrane proximal Toll-like receptor (TLR) components to suggest that RASSF1A may function to interfere and restrict TLR-driven activation of NFκB. Failure to restrict NFκB resulted in the inflammation-induced DNA damage driven tyrosine phosphorylation of YAP, subsequent p53 accumulation and loss of intestinal epithelial homeostasis.


Apoptosis | 2010

14-3-3 Mediated regulation of the tumor suppressor protein, RASSF1A

Haya Abu Ghazaleh; Renfred S. Chow; Sheryl L. Choo; Diana Pham; Jamie Olesen; Russell X. Wong; Christina Onyskiw; Shairaz Baksh

Death receptor-dependent apoptosis is an important mechanism of growth control. It has been demonstrated that Ras association domain family protein 1A (RASSF1A) is a tumor suppressor protein involved in death receptor-dependent apoptosis. However, it is unclear how RASSF1A-mediated cell death is initiated. We have now detailed 14-3-3 dependent regulation of RASSF1A-mediated cell death. We demonstrate that basal association of RASSF1A with 14-3-3 was lost following stimulation with tumor necrosis factor alpha (TNFα) or TNFα related apoptosis inducing ligand (TRAIL). Subsequent to the loss of 14-3-3 association, RASSF1A associated with modulator of apoptosis (MOAP-1) followed by death receptor association with either TNFα receptor 1 (TNF-R1) or TRAIL receptor 1 (TRAIL-R1). 14-3-3 association required basal phosphorylation by the serine/threonine kinase, glycogen synthase kinase 3β (GSK-3β), on serine 175, 178, and 179. Mutation of these critical serines resulted in the loss of 14-3-3 association and earlier recruitment of RASSF1A to MOAP-1, TNF-R1, and TRAIL-R1. Furthermore, stable cells containing a triple serine mutant of RASSF1A [serine (S) 175 to alanine (A) [S175A], S178A, and S179A] resulted in increased basal cell death, enhanced Annexin V staining and enhanced cleavage of poly (ADP-ribose) polymerase (PARP) following TNFα stimulation when compared to stable cells containing wild type RASSF1A. RASSF1A-mediated cell death is, therefore, tightly controlled by 14-3-3 association.


Brain Research | 2015

The modulatory action of harmane on serotonergic neurotransmission in rat brain

Haya Abu Ghazaleh; Maggie D. Lalies; David J. Nutt; Alan L. Hudson

The naturally occurring β-carboline, harmane, has been implicated in various physiological and psychological conditions. Some of these effects are attributed to its interaction with monoaminergic systems. Previous literature indicates that certain β-carbolines including harmane modulate central monoamine levels partly through monoamine oxidase (MAO) inhibition. However, this is not always the case and thus additional mechanisms may be involved. This study set to assess the potential modulatory role of harmane on the basal or K(+) stimulated release of preloaded radiolabelled noradrenaline (NA), dopamine (DA) and serotonin (5-HT) in rat brain cortex in vitro in the presence of the MAO inhibitor pargyline. Harmane displayed an overt elevation in K(+) -evoked [(3)H]5-HT release; whilst little and no effect was reported with [(3)H]DA and [(3)H]NA respectively. The effect of harmane on [(3)H]5-HT efflux was partially compensated in K(+)-free medium. Further analyses demonstrated that removal of Ca(2+) ions and addition of 1.2mM EGTA did not alter the action of harmane on [(3)H]5-HT release from rat brain cortex. The precise mechanism of action however remains unclear but is unlikely to reflect an involvement of MAO inhibition. The current finding aids our understanding on the modulatory action of harmane on monoamine levels and could potentially be of therapeutic use in psychiatric conditions such as depression and anxiety.


Neuroscience Letters | 2015

Harmane: an atypical neurotransmitter?

Haya Abu Ghazaleh; Maggie D. Lalies; David J. Nutt; Alan L. Hudson

Harmane is an active component of clonidine displacing substance and a candidate endogenous ligand for imidazoline binding sites. The neurochemistry of tritiated harmane was investigated in the present study examining its uptake and release properties in the rat brain central nervous system (CNS) in vitro. At physiological temperature, [(3)H]harmane was shown to be taken up in rat brain cortex. Further investigations demonstrated that treatment with monoamine uptake blockers (citalopram, nomifensine and nisoxetine) did not alter [(3)H]harmane uptake implicating that the route of [(3)H]harmane transport was distinct from the monoamine uptake systems. Furthermore, imidazoline ligands (rilmenidine, efaroxan, 2-BFI and idazoxan) showed no prominent effect on [(3)H]harmane uptake suggesting the lack of involvement of imidazoline binding sites. Subsequent analyses showed that disruption of the Na(+) gradient using ouabain or choline chloride did not block [(3)H]harmane uptake suggesting a Na(+)-independent transport mechanism. Moreover, higher temperatures (50°C) failed to impede [(3)H]harmane uptake implying a non-physiological transporter. The failure of potassium to evoke the release of preloaded [(3)H]harmane from rat brain cortex indicates that the properties of this putative endogenous ligand for imidazoline binding sites do not resemble that of a conventional neurotransmitter.


Neuroscience Letters | 2007

The effect of 1-(4,5-dihydro-1H-imidazol-2-yl) isoquinoline on monoamine release and turnover in the rat frontal cortex

Haya Abu Ghazaleh; Maggie D. Lalies; Stephen M. Husbands; David J. Nutt; Alan L. Hudson

Imidazoline-(2) binding sites (I(2)-BS) are widely distributed in rat brain and our studies have shown that drugs selective for these sites regulate central extrasynaptic monoamine concentrations. Radioligand binding studies have recently shown that BU98008 (1-[4,5-dihydro-1H-imidazol-2-yl] isoquinoline) displays high affinity at I(2)-binding sites. The aim of this study was set to assess the pharmacological actions of BU98008 in a functional in vivo model using the technique of in vivo brain microdialysis. Systemic injection of 20 mg/kg BU98008 produced an 85% rise in extracellular noradrenaline levels compared with basal values in the rat frontal cortex. Further experiments demonstrated that peripheral administration of 10 and 20 mg/kg BU98008 elicited a transient 25% elevation in dopamine overflow compared with basal values and simultaneously produced an 18% decrease in extracellular DOPAC (3-4-dihydroxyphenylacetic acid) levels compared to basal values. In addition, BU98008 did not appear to affect serotonergic neurotransmission in the frontal cortex. In conclusion, the present study demonstrates that BU98008 shares some functional similarities with known selective I(2)-BS ligands.


Journal of Neurology and Neuroscience | 2015

Borne Identity: Leading Endogenous Suspects at Imidazoline Binding Sites

Haya Abu Ghazaleh; Robin J. Tyacke; Alan L. Hudson

Over the past few years, a vast amount of research has shed light on the pharmacology of imidazoline binding sites (I-BS). To date, at least three classes of imidazoline binding sites have been characterised in accordance to their localisation, drug selectivity, proposed signalling pathways and functional roles. The existence of these sites raises the question as to whether an endogenous modulator exists. The identification of an endogenous extract denoted as clonidine displacing substance prompted the search for the active ingredient capable of mimicking the action of selective ligands at these sites. A number of candidates have been isolated and their functional activities have been assessed at these sites. Such endogenous ligands include agmatine, imidazoleacetic acid ribotide and the β-carboline harmane. As of yet, no consensus has been made to confirm the identity of the endogenous ligand at I-BS. The current review collates and reports what is known about these substances and their functional significance at I-BS.


PLOS ONE | 2014

Correction: The Tumor Suppressor Gene, RASSF1A, Is Essential for Protection against Inflammation -Induced Injury

Marilyn Gordon; Mohamed El-Kalla; Yuewen Zhao; Yahya Fiteih; Jennifer Law; Natalia Volodko; Anwar Mohamed; Ayman O.S. El-Kadi; Lei Liu; Jeff Odenbach; Aducio Thiesen; Christina Onyskiw; Haya Abu Ghazaleh; Jikyoung Park; Sean Bong Lee; Victor C. Yu; Carlos Fernandez-Patron; R. Todd Alexander; Eytan Wine; Shairaz Baksh

The name of the seventh author is incorrect. The correct name is Anwar Anwar-Mohamed. The abbreviation of this name in the Author Contributions Statement is correct as it is.


American Diabetes Association | 2017

American Diabetes Association 77th Scientific Sessions

Haya Abu Ghazaleh; Henrietta Mulnier; Maria Duaso


Primary Health Care Research & Development | 2018

A systematic review of community Leg Clubs for patients with chronic leg ulcers

Haya Abu Ghazaleh; Micol Artom; Jackie Sturt

Collaboration


Dive into the Haya Abu Ghazaleh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge