Hayam M. A. Ashour
Alexandria University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hayam M. A. Ashour.
Bioorganic & Medicinal Chemistry | 2009
Sherif A. F. Rostom; Ibrahim M. El-Ashmawy; Heba A. Abd El Razik; Mona H. Badr; Hayam M. A. Ashour
The synthesis of two groups of structure hybrids comprising basically the antipyrine moiety attached to either polysubstituted thiazole or 2,5-disubstituted-1,3,4-thiadiazole counterparts through various linkages is described. Twelve out of the newly synthesized compounds were evaluated for their anti-inflammatory activity using two different screening protocols; namely, the formalin-induced paw edema and the turpentine oil-induced granuloma pouch bioassays, using diclofenac Na as a reference standard. The ulcerogenic effects and acute toxicity (ALD(50)) values of these compounds were also determined. Meanwhile, the analgesic activity of the same compounds was evaluated using the rat tail withdrawal technique. Additionally, the synthesized compounds were evaluated for their in vitro antimicrobial activity. In general, compounds belonging to the thiazolylantipyrine series exhibited better biological activities than their thiadiazolyl structure variants. Collectively, compounds 6, 10, 26, and 27 proved to display distinctive anti-inflammatory and analgesic profiles with a fast onset of action. All of the tested compounds revealed super GI safety profile and are well tolerated by the experimental animals with high safety margin (ALD(50)>3.0 g/kg). Meanwhile, compounds 7, 10, 11, and 23 are considered to be the most active broad spectrum antimicrobial members in this study. Compound 10 could be identified as the most biologically active member within this study with an interesting dual anti-inflammatory analgesic and antibacterial profile.
Bioorganic & Medicinal Chemistry | 2009
Sherif A. F. Rostom; Hayam M. A. Ashour; Heba A. Abd El Razik; Abd El Fattah H. Abd El Fattah; Nagwa N. El-Din
The azole pharmacophore is still considered a viable lead structure for the synthesis of more efficacious and broad spectrum antimicrobial agents. Potential antibacterial and antifungal activities are encountered with some tetrazoles. Therefore, this study presents the synthesis and antimicrobial evaluation of a new series of substituted tetrazoles that are structurally related to the famous antimicrobial azole pharmacophore. A detailed discussion of the structural elucidation of some of the newly synthesized compounds is also described. Antimicrobial evaluation revealed that twenty compounds were able to display variable growth inhibitory effects on the tested Gram positive and Gram negative bacteria with special efficacy against the Gram positive strains. Meanwhile, six compounds exhibited moderate antifungal activity against Candida albicans and Aspergillus fumigatus. Structurally, the antibacterial activity was encountered with tetrazoles containing a phenyl substituent, while the obtained antifungal activity was confined to the benzyl variants. Compounds 16, 18, 24 and 27 were proved to be the most active antibacterial members within this study with a considerable broad spectrum against all the Gram positive and negative strains tested. A distinctive anti-Gram positive activity was displayed by compound 18 against Staphylococcus aureus that was equipotent to ampicillin (MIC 6.25 microg/mL). On the other hand, twelve compounds were selected to be screened for their preliminary anticonvulsant activity against subcutaneous metrazole (ScMet) and maximal electroshock (MES) induced seizures in mice. The results revealed that five compounds namely; 3, 5, 13, 21, and 24 were able to display noticeable anticonvulsant activity in both tests at 100 mg/kg dose level. Compounds 5 and 21 were proved to be the most active anticonvulsant members in this study with special high activity in the ScMet assay (% protection: 100% and 80%, respectively).
Archiv Der Pharmazie | 2009
Sherif A. F. Rostom; Hayam M. A. Ashour; Heba A. Abd El Razik
Synthesis and evaluation of the antimicrobial and cytotoxic activity of two series of polysubstituted pyrimidines comprising the thioether functionality and other pharmacophores, reported to contribute to various chemotherapeutic activities are described. All newly synthesized compounds were subjected to in‐vitro antibacterial and antifungal screening. Out of the compounds tested, 18 derivatives displayed an obvious inhibitory effect on the growth of the tested Gram‐positive and Gram‐negative bacterial strains, with special effectiveness against the Gram‐positive strains. Compounds 1, 2, 6, 7, 9, 10, 11, 21, and 24 revealed remarkable broad antibacterial spectrum profiles. Among those, compounds 1, 2, 6, 7, 9, and 24 exhibited an appreciable antifungal activity against C. albicans. Compound 2 proved to be the most active antimicrobial member identified here as it showed twice the activity of ampicillin against B. subtilis and the same activity of ampicillin against M. Luteus and P. aeruginosa together with a moderate antifungal activity. Further, eleven analogs were evaluated for their in‐vitro cytotoxic potential utilizing the standard MTT assay against a panel of three human cell lines: breast adenocarcinoma MCF7, hepatocellular carcinoma HePG2, and colon carcinoma HT29. The obtained data revealed that six of the tested compounds 1, 3, 7, 12, 13, and 15 showed a variable degree of cytotoxic activity against the tested cell lines at both the LC50 and LC90 levels. Compound 7 proved to be the most active cytotoxic member in this study with special effectiveness against the colon carcinoma HT29 and breast cancer MCF7 human cell lines for LC50 and LC90. Thus, compounds 1 and 7 could be considered as possible dual antimicrobial‐anticancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2009
Adnan A. Bekhit; Hayam M. A. Ashour; Alaa El-Din A. Bekhit; Hamdy M. Abdel-Rahman; Salma A. Bekhit
Four series of pyrazolylbenzenesulfonamide derivatives were synthesized and evaluated for their anti-inflammatory activity using cotton pellet induced granuloma and carrageenan-induced rat paw edema bioassays. Moreover, COX-1 and COX-2 inhibitory activity, ulcerogenic effect and acute toxiCIT000y were also determined. Furthermore, the target compounds were screened for their in-vitro antimicrobial activity against Eischerichia coli, Staphylococcus aureus and Candida albicans. Compounds 4-(3-Phenyl-4-cyano-1H-pyrazol-1-yl)benzenesulfonamide 9a and 4-(3-Tolyl-4-cyano-1H-pyrazol-1-yl)benzenesulfonamide 9b were not only found to be the most active dual anti-inflammatory antimicrobial agents in the present study with good safety margin and minimal ulcerogenic effect but also exhibited good selective inhibitory activity towards COX-2. A docking pose for 9a and 9b separately in the active site of the human COX-2 enzyme was also obtained. Therefore, these compounds would represent a fruitful matrix for the development of dual anti-inflammatory antimicrobial candidates with remarkable COX-2 selectivity.
Archiv Der Pharmazie | 2009
Hayam M. A. Ashour; Abeer E. Abdel Wahab
Synthesis and biological evaluation of novel pyrazoles and pyrazolo[3,4‐d]pyrimidines are reported. Fourteen compounds were selected by the NCI and tested for their preliminary in‐vitro anticancer activity, whereas all the synthesized compounds were evaluated for their in‐vitro antimicrobial activity. Compound 12a was proven to possess the highest anticancer activity with a broad spectrum profile. It showed particular effectiveness towards leukemia HL‐60 (TB), K‐562, non‐small cell lung cancer NCI‐H23, and colon cancer HT 29, KM 12 cell lines (GI50 = 6.59, 4.44, 1.37, 3.33, and 9.63 μM, respectively). Out of the synthesized compounds, thirteen derivatives were found to display pronounced antimicrobial activity especially against P. aeruginosa. Compounds 2c, 5b, 10, 11b, 17b, 18b, and 19 were proven to be the most active with a broad spectrum of activity. Compound 19 was found to be equipotent to ampicillin against B. subtilis, whereas compounds 11b and 19 were four times superior to ampicillin against P. aeruginosa, while compounds 5b and 18b were equipotent to ampicillin against the same organism. Moreover, compounds 2c, 10, and 11b were nearly equipotent to ampicillin against E. coli. On the other hand, compounds 2c, 5b, 10, 11a, 17b, and 18b exerted nearly half the activity of clotrimazole against C. albicans.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2015
Ahmed Malki; Rasha Y. Elbayaa; Hayam M. A. Ashour; Christopher A. Loffredo; Amal M. Youssef
Abstract In this study, novel thiosemicarbazides and 1,3,4-oxadiazoles were synthesized and evaluated for their anticancer effects on human MCF-7 breast cancer cell lines. Among the synthesized derivatives studied, compound 2-(3-(4-chlorophenyl)-3-hydroxybutanoyl)-N-phenylhydrazinecarbothioamide 4c showed the highest cytotoxicity against MCF-7 breast cancer cells as it reduced cell viability to approximately 15% compared to approximately 25% in normal breast epithelial cells. Therefore, we focused on 4c for further investigations. Our data showed that 4c induced apoptosis in MCF-7 cells which was further confirmed by TUNEL assay. Western blotting analysis showed that compound 4c up-regulated the pro-survival proteins Bax, Bad and ERK1/2, while it down-regulated anti-apoptotic proteins Bcl-2, Akt and STAT-3. Additionally, 4c induced phosphorylation of SAPK/JNK in MCF-7 cells. Pretreatment of MCF-7 cells with 10 µM of JNK inhibitor significantly reduced 4c-induced apoptosis. Molecular docking results suggested that compound 4c showed a binding pattern close to the pattern observed in the structure of the lead fragment bound to JNK1. Collectively, the data of current study suggested that the thiosemicarbazide 4c might trigger apoptosis in human MCF-7 cells by targeting JNK signaling.
Bioorganic Chemistry | 2017
Marwa H. El-Wakil; Hayam M. A. Ashour; Manal N. S. Saudi; Ahmed Hassan; Ibrahim M. Labouta
In silico target fishing approach using PharmMapper server identified c-Met kinase as the selective target for our previously synthesized compound NCI 748494/1. This approach was validated by in vitro kinase assay which showed that NCI 748494/1 possessed promising inhibitory activity against c-Met kinase (IC50=31.70μM). Assessment of ADMET profiling, drug-likeness, drug score as well as docking simulation for the binding pose of that compound in the active site of c-Met kinase domain revealed that NCI 748494/1 could be considered as a promising drug lead. Based on target identification and validation, it was observed that there is structure similarity between NCI 748494/1 and the reported type II c-Met kinase inhibitor BMS-777607. Optimization of our lead NCI 748494/1 furnished newly synthesized 1,2,4-triazine derivatives based on well-established structure-activity relationships, whereas three compounds namely; 4d, 7a and 8c displayed excellent in vitro cytotoxicity against three c-Met addicted cancer cell lines; A549 (lung adenocarcinoma), HT-29 (colon cancer) and MKN-45 (gastric carcinoma); with IC50 values in the range 0.01-1.86µM. In vitro c-Met kinase assay showed 8c to possess the highest c-Met kinase inhibition profile (IC50=4.31µM). Docking of the active compounds in c-Met kinase active site revealed strong binding interactions comparable to the lead NCI 748494/1 and BMS-777607, suggesting that c-Met inhibition is very likely to be the mechanism of the antitumor effect of these derivatives.
Molecules | 2016
Ahmed Malki; Mona O. Mohsen; Hassan A. Aziz; Ola H. Rizk; Omima Shaban; Mohamed El-Sayed; Zaki A. Sherif; Hayam M. A. Ashour
The synthesis of new 3-cyano-2-substituted pyridines bearing various pharmacophores and functionalities at position 2 is described. The synthesized compounds were evaluated for their in vitro anti-cancer activities on five cancer cell lines using 5-FU as reference compound. The results revealed that the benzohydrazide derivative 9a induced growth inhibition in human breast cancer cell line MCF-7 with an IC50 value of 2 μM and it showed lower cytotoxicity on MCF-12a normal breast epithelial cells. Additionally, 9a induced apoptotic morphological changes and induced apoptosis in MCF-7 in a dose and time-dependent manner according to an enzyme linked immunosorbent apoptosis assay which is further confirmed by a TUNEL assay. Flow cytometric analysis indicated that 9a arrested MCF-7 cells in the G1 phase, which was further confirmed by increased expression of p21 and p27 and reduced expression of CDK2 and CDK4. Western blot data revealed significant upregulation of the expression of p53, Bax, caspase-3 and down-regulation of Bcl-2, Mdm-2 and Akt. Additionally, 9a increased the release of cytochrome c from mitochondria to cytoplasm which provokes the mitochondrial apoptotic pathway while it showed no significant change on the expression of the death receptor proteins procaspase-8, caspase-8 and FAS. Furthermore, 9a reduced the expression of phospho AKT and β-catenin in dose dependent manner while inhibiting the expression of migration-related genes such as matrix metalloproteinase (MMP)-9 and vascular endothelial growth factor (VEGF). Our findings suggest that compound 9a could be considered as a lead structure for further development of more potent apoptosis inducing agents with anti-metastatic activities.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2016
Ahmed Malki; Hayam M. A. Ashour; Rasha Y. Elbayaa; Doaa Issa; Hassan A. Aziz; Xiaozhuo Chen
Abstract Novel 1,5-diphenyl-6-substituted-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-ones were synthesized and characterized. All compounds were screened for their anti-proliferative activities in five different cancer cell lines. The results showed that compounds 7a and 7b comprising aminoguanidino or guanidino moiety at position 6 inhibited proliferation of RKO colon cancer cells with IC50 of 8 and 4 μM, respectively. Compounds 7a and 7b induced apoptosis in RKO cells, which was confirmed by TUNEL and annexin V-FITC assays. Flow cytometric analysis indicated that compounds 7a and 7b arrested RKO cells in the G1 phase and the most active compound 7b increased levels of p53, p21, Bax, ERK1/2 and reduced levels of Bcl2 and Akt. Compound 7b also activates release of cytochrome c, which is consistent with activation of caspase-9. Additionally, compound 7b increased caspase-3 activity and cleaved PARP-1 in RKO cells. Collectively, these findings could establish a molecular basis for the development of new anti-cancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2016
Wissam H. Faour; Mohamed Mroueh; Costatantine F. Daher; Rasha Y. Elbayaa; Hanan M. Ragab; Asser I. Ghoneim; Ahmed El-Mallah; Hayam M. A. Ashour
Abstract Four series of new bipyrazoles comprising the N-phenylpyrazole scaffold linked to polysubstituted pyrazoles or to antipyrine moiety through different amide linkages were synthesized. The synthesized compounds were evaluated for their anti-inflammatory and analgesic activities. In vitro COX-1/COX-2 inhibition study revealed that compound 16b possessed the lowest IC50 value against both COX-1 and COX-2. Moreover, the effect of the most promising compounds on inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) protein expression in lipopolysaccharide (LPS)-activated rat monocytes was also investigated. The results revealed that some of the synthesized compounds showed anti-inflammatory and/or analgesic activity with less ulcerogenic potential than the reference drug diclofenac sodium and are well tolerated by experimental animals. Moreover, they significantly inhibited iNOS and COX-2 protein expression induced by LPS stimulation. Compounds 16b and 18 were proved to display anti-inflammatory activity superior to diclofenac sodium and analgesic activity equivalent to it with minimal ulcerogenic potential.