Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hayato Yokoi is active.

Publication


Featured researches published by Hayato Yokoi.


Nature Reviews Genetics | 2007

Evolutionary developmental biology and genomics

Cristian Cañestro; Hayato Yokoi; John H. Postlethwait

Reciprocal questions often frame studies of the evolution of developmental mechanisms. How can species share similar developmental genetic toolkits but still generate diverse life forms? Conversely, how can similar forms develop from different toolkits? Genomics bridges the gap between evolutionary and developmental biology, and can help answer these evo–devo questions in several ways. First, it informs us about historical relationships, thus orienting the direction of evolutionary diversification. Second, genomics lists all toolkit components, thereby revealing contraction and expansion of the genome and suggesting mechanisms for evolution of both developmental functions and genome architecture. Finally, comparative genomics helps us to identify conserved non-coding elements and their relationship to genome architecture and development.


PLOS Genetics | 2009

Consequences of Lineage-Specific Gene Loss on Functional Evolution of Surviving Paralogs: ALDH1A and Retinoic Acid Signaling in Vertebrate Genomes

Cristian Cañestro; Julian M. Catchen; Adriana Rodríguez-Marí; Hayato Yokoi; John H. Postlethwait

Genome duplications increase genetic diversity and may facilitate the evolution of gene subfunctions. Little attention, however, has focused on the evolutionary impact of lineage-specific gene loss. Here, we show that identifying lineage-specific gene loss after genome duplication is important for understanding the evolution of gene subfunctions in surviving paralogs and for improving functional connectivity among human and model organism genomes. We examine the general principles of gene loss following duplication, coupled with expression analysis of the retinaldehyde dehydrogenase Aldh1a gene family during retinoic acid signaling in eye development as a case study. Humans have three ALDH1A genes, but teleosts have just one or two. We used comparative genomics and conserved syntenies to identify loss of ohnologs (paralogs derived from genome duplication) and to clarify uncertain phylogenies. Analysis showed that Aldh1a1 and Aldh1a2 form a clade that is sister to Aldh1a3-related genes. Genome comparisons showed secondarily loss of aldh1a1 in teleosts, revealing that Aldh1a1 is not a tetrapod innovation and that aldh1a3 was recently lost in medaka, making it the first known vertebrate with a single aldh1a gene. Interestingly, results revealed asymmetric distribution of surviving ohnologs between co-orthologous teleost chromosome segments, suggesting that local genome architecture can influence ohnolog survival. We propose a model that reconstructs the chromosomal history of the Aldh1a family in the ancestral vertebrate genome, coupled with the evolution of gene functions in surviving Aldh1a ohnologs after R1, R2, and R3 genome duplications. Results provide evidence for early subfunctionalization and late subfunction-partitioning and suggest a mechanistic model based on altered regulation leading to heterochronic gene expression to explain the acquisition or modification of subfunctions by surviving ohnologs that preserve unaltered ancestral developmental programs in the face of gene loss.


Development Growth & Differentiation | 2007

Right-elevated expression of charon is regulated by fluid flow in medaka Kupffer's vesicle

Motoki Hojo; Shigeo Takashima; Daisuke Kobayashi; Akira Sumeragi; Atsuko Shimada; Tatsuya Tsukahara; Hayato Yokoi; Takanori Narita; Tomoko Jindo; Takahiro Kage; Tadao Kitagawa; Tetsuaki Kimura; Koshin Sekimizu; Akimitsu Miyake; Davin H. E. Setiamarga; Ryohei Murakami; Sachiko Tsuda; Shinya Ooki; Ken Kakihara; Kiyoshi Naruse; Hiroyuki Takeda

Recent studies have revealed that a cilium‐generated liquid flow in the node has a crucial role in the establishment of the left‐right (LR) axis in the mouse. In fish, Kupffers vesicle (KV), a teleost‐specific spherical organ attached to the tail region, is known to have an equivalent role to the mouse node during LR axis formation. However, at present, there has been no report of an asymmetric gene expressed in KV under the control of fluid flow. Here we report the earliest asymmetric gene in teleost KV, medaka charon, and its regulation. Charon is a member of the Cerberus/DAN family of proteins, first identified in zebrafish. Although zebrafish charon was reported to be symmetrically expressed in KV, medaka charon displays asymmetric expression with more intense expression on the right side. This asymmetric expression was found to be regulated by KV flow because symmetric and up‐regulated charon expression was observed in flow‐defective embryos with immotile cilia or disrupted KV. Taken together, medaka charon is a reliable gene marker for LR asymmetry in KV and thus, will be useful for the analysis of the early steps downstream of the fluid flow.


Developmental Biology | 2009

Expression profiling of zebrafish sox9 mutants reveals that Sox9 is required for retinal differentiation

Hayato Yokoi; Yi Lin Yan; Michael R. Miller; Ruth A. BreMiller; Julian M. Catchen; Eric A. Johnson; John H. Postlethwait

The transcription factor gene Sox9 plays various roles in development, including differentiation of the skeleton, gonads, glia, and heart. Other functions of Sox9 remain enigmatic. Because Sox9 protein regulates expression of target genes, the identification of Sox9 targets should facilitate an understanding of the mechanisms of Sox9 action. To help identify Sox9 targets, we used microarray expression profiling to compare wild-type embryos to mutant embryos lacking activity for both sox9a and sox9b, the zebrafish co-orthologs of Sox9. Candidate genes were further evaluated by whole-mount in situ hybridization in wild-type and sox9 single and double mutant embryos. Results identified genes expressed in cartilage (col2a1a and col11a2), retina (calb2a, calb2b, crx, neurod, rs1, sox4a and vsx1) and pectoral fin bud (klf2b and EST AI722369) as candidate targets for Sox9. Cartilage is a well-characterized Sox9 target, which validates this strategy, whereas retina represents a novel Sox9 function. Analysis of mutant phenotypes confirmed that Sox9 helps regulate the number of Müller glia and photoreceptor cells and helps organize the neural retina. These roles in eye development were previously unrecognized and reinforce the multiple functions that Sox9 plays in vertebrate development.


Development | 2007

Maternal-zygotic medaka mutants for fgfr1 reveal its essential role in the migration of the axial mesoderm but not the lateral mesoderm

Atsuko Shimada; Mina Yabusaki; Hitomi Niwa; Hayato Yokoi; Kohei Hatta; Daisuke Kobayashi; Hiroyuki Takeda

The medaka fish (Oryzias latipes) is an emerging model organism for which a variety of unique developmental mutants have now been generated. Our recent mutagenesis screening of the medaka identified headfish (hdf), a null mutant for fgf receptor 1 (fgfr1), which fails to develop structures in the trunk and tail. Despite its crucial role in early development, the functions of Fgfr1-mediated signaling have not yet been well characterized due to the complexity of the underlying ligand-receptor interactions. In our present study, we further elucidate the roles of this pathway in the medaka using the hdf (fgfr1) mutant. Because Fgfr1 is maternally supplied in fish, we first generated maternal-zygotic (MZ) mutants by transplanting homozygous hdf germ cells into sterile interspecific hybrids. Interestingly, the host hybrid fish recovered their fertility and produced donor-derived mutant progeny. The resulting MZ mutants also exhibited severe defects in their anterior head structures that are never observed in the corresponding zygotic mutants. A series of detailed analyses subsequently revealed that Fgfr1 is required for the anterior migration of the axial mesoderm, particularly the prechordal plate, in a cell-autonomous manner, but is not required for convergence movement of the lateral mesoderm. Furthermore, fgfr1 was found to be dispensable for initial mesoderm induction. The MZ hdf medaka mutant was thus found to be a valuable model system to analyze the precise role of fgfr1-mediated signaling in vertebrate early development.


Mechanisms of Development | 2004

Possible roles of zic1 and zic4, identified within the medaka Double anal fin (Da) locus, in dorsoventral patterning of the trunk-tail region (related to phenotypes of the Da mutant).

Masato Ohtsuka; Natsuko Kikuchi; Hayato Yokoi; Masato Kinoshita; Yuko Wakamatsu; Kenjiro Ozato; Hiroyuki Takeda; Hidetoshi Inoko; Minoru Kimura

Double anal fin (Da) is a spontaneous medaka mutant that exhibits an unique ventralizing phenotype, a mirror-image duplication across the lateral midline in the dorsal trunk-tail region. In the mutant, early D-V specification appears normal but the altered phenotype becomes evident during late embryogenesis. In this study, we genetically specified the mutation to a 174-kb region harboring two zinc-finger type transcription factors, zic1 and zic4, and compared the genomic structures of this region between wild-type and Da mutant fish. No mutation was found in the coding regions of either gene of the mutant, while two fragments, 324 bp and 3-4 kb long, were found inserted downstream of zic1 and zic4, respectively. Probably as a result of this, the expression of both genes is lost in the derivatives of the dorsal (epaxial) somite and the region dorsal to the terminal axis bending. All these tissues are morphologically affected or become ventralized in the mutants. In contrast, the expression in the head region and dorsal spinal cord remained unchanged. Detailed characterization of Da phenotypes revealed a novel defect in the axial skeleton (spina bifida occulta) that was also found in zic1-deficient mice. Finally, zic1-morpholino injection partially phenocopied early Da phenotypes. These findings strongly suggest that zic1 and/or zic4 are required for dorsal identity in the trunk-tail region and that loss of their expression in the epaxial somite derivatives and tail region causes the Da phenotypes.


Journal of Experimental Zoology | 2010

Evolution of developmental regulation in the vertebrate FgfD subfamily

Richard Jovelin; Yi Lin Yan; Xinjun He; Julian M. Catchen; Angel Amores; Cristian Cañestro; Hayato Yokoi; John H. Postlethwait

Fibroblast growth factors (Fgfs) encode small signaling proteins that help regulate embryo patterning. Fgfs fall into seven families, including FgfD. Nonvertebrate chordates have a single FgfD gene; mammals have three (Fgf8, Fgf17, and Fgf18); and teleosts have six (fgf8a, fgf8b, fgf17, fgf18a, fgf18b, and fgf24). What are the evolutionary processes that led to the structural duplication and functional diversification of FgfD genes during vertebrate phylogeny? To study this question, we investigated conserved syntenies, patterns of gene expression, and the distribution of conserved noncoding elements (CNEs) in FgfD genes of stickleback and zebrafish, and compared them with data from cephalochordates, urochordates, and mammals. Genomic analysis suggests that Fgf8, Fgf17, Fgf18, and Fgf24 arose in two rounds of whole genome duplication at the base of the vertebrate radiation; that fgf8 and fgf18 duplications occurred at the base of the teleost radiation; and that Fgf24 is an ohnolog that was lost in the mammalian lineage. Expression analysis suggests that ancestral subfunctions partitioned between gene duplicates and points to the evolution of novel expression domains. Analysis of CNEs, at least some of which are candidate regulatory elements, suggests that ancestral CNEs partitioned between gene duplicates. These results help explain the evolutionary pathways by which the developmentally important family of FgfD molecules arose and the deduced principles that guided FgfD evolution are likely applicable to the evolution of developmental regulation in many vertebrate multigene families.


Developmental Dynamics | 2007

Phenotypic analysis of a novel chordin mutant in medaka.

Shigeo Takashima; Atsuko Shimada; Daisuke Kobayashi; Hayato Yokoi; Takanori Narita; Tomoko Jindo; Takahiro Kage; Tadao Kitagawa; Tetsuaki Kimura; Koshin Sekimizu; Akimitsu Miyake; Davin H. E. Setiamarga; Ryohei Murakami; Sachiko Tsuda; Shinya Ooki; Ken Kakihara; Motoki Hojo; Kiyoshi Naruse; Hiroshi Mitani; Akihiro Shima; Yuji Ishikawa; Kazuo Araki; Yumiko Saga; Hiroyuki Takeda

We have isolated and characterized a ventralized mutant in medaka (the Japanese killifish; Oryzias latipes), which turned out to have a mutation in the chordin gene. The mutant exhibits ventralization of the body axis, malformation of axial bones, over‐bifurcation of yolk sac blood vessels, and laterality defects in internal organs. The mutant exhibits variability of phenotypes, depending on the culture temperature, from embryos with a slightly ventralized phenotype to those without any head and trunk structures. Taking advantages of these variable and severe phenotypes, we analyzed the role of Chordin‐dependent tissues such as the notochord and Kupffers vesicle (KV) in the establishment of left–right axis in fish. The results demonstrate that, in the absence of the notochord and KV, the medaka lateral plate mesoderm autonomously and bilaterally expresses spaw gene in a default state. Developmental Dynamics 236:2298–2310, 2007.


Mechanisms of Development | 2004

A mutation in the gene for δ-aminolevulinic acid dehydratase (ALAD) causes hypochromic anemia in the medaka, Oryzias latipes

Daigo Sakamoto; Hisaaki Kudo; Keiji Inohaya; Hayato Yokoi; Takanori Narita; Kiyoshi Naruse; Hiroshi Mitani; Kazuo Araki; Akihiro Shima; Yuji Ishikawa; Yoshiyuki Imai; Akira Kudo

Abstract A genetic screen for mutations affecting embryogenesis in the medaka, Oryzias latipes , identified a mutant, whiteout ( who ), that exhibited hypochromic anemia. The who mutant initially had the normal number of blood cells, but it then gradually decreased during the embryonic and larval stages. The blood cells in the who mutants show an elongated morphology and little hemoglobin activity. Genetic mapping localized who to the vicinity of a LG12 marker, olgc1 . By utilizing the highly conserved synteny between medaka and pufferfish, we identified a gene for δ-aminolevulinic acid dehydratase (ALAD), which is the second enzyme in the heme synthetic pathway, as a candidate for who . We found a missense mutation in the alad gene that was tightly linked to the who phenotype, strongly suggesting that the hypochromic anemia phenotype in the who mutant is caused by a loss of the alad function. Thus, who mutants represent a model for the human disease ALAD-deficiency porphyria.


Genesis | 2009

Characterization of teleost Mdga1 using a gene-trap approach in medaka (Oryzias latipes).

Shinya Sano; Shigeo Takashima; Hitomi Niwa; Hayato Yokoi; Atsuko Shimada; Alexander Arenz; Joachim Wittbrodt; Hiroyuki Takeda

MAM domain containing glycosilphosphatidilinositol anchor 1 (MDGA1) is an IgCAM protein present in many vertebrate species including humans. In mammals, MDGA1 is expressed by a subset of neurons in the developing brain and thought to function in neural cell migration. We identified a fish ortholog of mdga1 by a gene‐trap screen utilizing the Frog Prince transposon in medaka (Japanese killifish, Oryzias latipes). The gene‐trap vector was inserted into an intronic region of mdga1 to form a chimeric protein with green fluorescent protein, allowing us to monitor mdga1 expression in vivo. Expression of medaka mdga1 was seen in various types of embryonic brain neurons, and specifically in neurons migrating toward their target sites, supporting the proposed function of MDGA1. We also isolated the closely related mdga2 gene, whose expression partially overlapped with that of mdga1. Despite the fact that the gene‐trap event eliminated most of the functional domains of the Mdga1 protein, homozygous embryos developed normally without any morphological abnormality, suggesting a functional redundancy of Mdga1 with other related proteins. High sequential homology of MDGA proteins between medaka and other vertebrate species suggests an essential role of the MDGA gene family in brain development among the vertebrate phylum. genesis 47:505–513, 2009.

Collaboration


Dive into the Hayato Yokoi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuji Ishikawa

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge