Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hayyoung Lee is active.

Publication


Featured researches published by Hayyoung Lee.


Nature | 2009

The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex

Beom Seok Park; Dong Hyun Song; Ho Min Kim; Byong-Seok Choi; Hayyoung Lee; Jie-Oh Lee

The lipopolysaccharide (LPS) of Gram negative bacteria is a well-known inducer of the innate immune response. Toll-like receptor (TLR) 4 and myeloid differentiation factor 2 (MD-2) form a heterodimer that recognizes a common ‘pattern’ in structurally diverse LPS molecules. To understand the ligand specificity and receptor activation mechanism of the TLR4–MD-2–LPS complex we determined its crystal structure. LPS binding induced the formation of an m-shaped receptor multimer composed of two copies of the TLR4–MD-2–LPS complex arranged symmetrically. LPS interacts with a large hydrophobic pocket in MD-2 and directly bridges the two components of the multimer. Five of the six lipid chains of LPS are buried deep inside the pocket and the remaining chain is exposed to the surface of MD-2, forming a hydrophobic interaction with the conserved phenylalanines of TLR4. The F126 loop of MD-2 undergoes localized structural change and supports this core hydrophobic interface by making hydrophilic interactions with TLR4. Comparison with the structures of tetra-acylated antagonists bound to MD-2 indicates that two other lipid chains in LPS displace the phosphorylated glucosamine backbone by ∼5 Å towards the solvent area. This structural shift allows phosphate groups of LPS to contribute to receptor multimerization by forming ionic interactions with a cluster of positively charged residues in TLR4 and MD-2. The TLR4–MD-2–LPS structure illustrates the remarkable versatility of the ligand recognition mechanisms employed by the TLR family, which is essential for defence against diverse microbial infection.


Cell | 2007

Crystal Structure of the TLR4-MD-2 Complex with Bound Endotoxin Antagonist Eritoran

Ho Min Kim; Beom Seok Park; Jung-In Kim; Sung Eun Kim; Judong Lee; Se Cheol Oh; Purevjav Enkhbayar; Norio Matsushima; Hayyoung Lee; Ook Joon Yoo; Jie-Oh Lee

TLR4 and MD-2 form a heterodimer that recognizes LPS (lipopolysaccharide) from Gram-negative bacteria. Eritoran is an analog of LPS that antagonizes its activity by binding to the TLR4-MD-2 complex. We determined the structure of the full-length ectodomain of the mouse TLR4 and MD-2 complex. We also produced a series of hybrids of human TLR4 and hagfish VLR and determined their structures with and without bound MD-2 and Eritoran. TLR4 is an atypical member of the LRR family and is composed of N-terminal, central, and C-terminal domains. The beta sheet of the central domain shows unusually small radii and large twist angles. MD-2 binds to the concave surface of the N-terminal and central domains. The interaction with Eritoran is mediated by a hydrophobic internal pocket in MD-2. Based on structural analysis and mutagenesis experiments on MD-2 and TLR4, we propose a model of TLR4-MD-2 dimerization induced by LPS.


Immunity | 2009

Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer

Jin Young Kang; Xuehua Nan; Mi Sun Jin; Suk-Jun Youn; Young Hee Ryu; Shinjee Mah; Seung Hyun Han; Hayyoung Lee; Sang-Gi Paik; Jie-Oh Lee

Toll-like receptor 2 (TLR2) initiates potent immune responses by recognizing diacylated and triacylated lipopeptides. Its ligand specificity is controlled by whether it heterodimerizes with TLR1 or TLR6. We have determined the crystal structures of TLR2-TLR6-diacylated lipopeptide, TLR2-lipoteichoic acid, and TLR2-PE-DTPA complexes. PE-DTPA, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-diethylenetriaminepentaacetic acid, is a synthetic phospholipid derivative. Two major factors contribute to the ligand specificity of TLR2-TLR1 or TLR2-TLR6 heterodimers. First, the lipid channel of TLR6 is blocked by two phenylalanines. Simultaneous mutation of these phenylalanines made TLR2-TLR6 fully responsive not only to diacylated but also to triacylated lipopeptides. Second, the hydrophobic dimerization interface of TLR2-TLR6 is increased by 80%, which compensates for the lack of amide lipid interaction between the lipopeptide and TLR2-TLR6. The structures of the TLR2-lipoteichoic acid and the TLR2-PE-DTPA complexes demonstrate that a precise interaction pattern of the head group is essential for a robust immune response by TLR2 heterodimers.


FEBS Letters | 2002

Crystal structure of phosphodiesterase 4D and inhibitor complex1

Mi Eun Lee; Joseph Markowitz; Jie-Oh Lee; Hayyoung Lee

Cyclic nucleotide phosphodiesterases (PDEs) regulate physiological processes by degrading intracellular second messengers, adenosine‐3′,5′‐cyclic phosphate or guanosine‐3′,5′‐cyclic phosphate. The first crystal structure of PDE4D catalytic domain and a bound inhibitor, zardaverine, was determined. Zardaverine binds to a highly conserved pocket that includes the catalytic metal binding site. Zardaverine fills only a portion of the active site pocket. More selective PDE4 inhibitors including rolipram, cilomilast and roflumilast have additional functional groups that can utilize the remaining empty space for increased binding energy and selectivity. In the crystal structure, the catalytic domain of PDE4D possesses an extensive dimerization interface containing residues that are highly conserved in PDE1, 3, 4, 8 and 9. Mutations of R358D or D322R among these interface residues prohibit dimerization of the PDE4D catalytic domain in solution.


Journal of Biological Chemistry | 2007

Structural Diversity of the Hagfish Variable Lymphocyte Receptors

Ho Min Kim; Se Cheol Oh; Ki Jung Lim; Jun Kasamatsu; Jin Young Heo; Beom Seok Park; Hayyoung Lee; Ook Joon Yoo; Masanori Kasahara; Jie-Oh Lee

Variable lymphocyte receptors (VLRs) are recently discovered leucine-rich repeat (LRR) family proteins that mediate adaptive immune responses in jawless fish. Phylogenetically it is the oldest adaptive immune receptor and the first one with a non-immunoglobulin fold. We present the crystal structures of one VLR-A and two VLR-B clones from the inshore hagfish. The hagfish VLRs have the characteristic horseshoe-shaped structure of LRR family proteins. The backbone structures of their LRR modules are highly homologous, and the sequence variation is concentrated on the concave surface of the protein. The conservation of key residues suggests that our structures are likely to represent the LRR structures of the entire repertoire of jawless fish VLRs. The analysis of sequence variability, prediction of protein interaction surfaces, amino acid composition analysis, and structural comparison with other LRR proteins suggest that the hypervariable concave surface is the most probable antigen binding site of the VLR.


FEBS Letters | 2003

Crystal structure of Drosophila angiotensin I-converting enzyme bound to captopril and lisinopril1

Ho Min Kim; Dong Ryeol Shin; Ook Joon Yoo; Hayyoung Lee; Jie-Oh Lee

Angiotensin I‐converting enzymes (ACEs) are zinc metallopeptidases that cleave carboxy‐terminal dipeptides from short peptide hormones. We have determined the crystal structures of AnCE, a Drosophila homolog of ACE, with and without bound inhibitors to 2.4 Å resolution. AnCE contains a large internal channel encompassing the entire protein molecule. This substrate‐binding channel is composed of two chambers, reminiscent of a peanut shell. The inhibitor and zinc‐binding sites are located in the narrow bottleneck connecting the two chambers. The substrate and inhibitor specificity of AnCE appears to be determined by extensive hydrogen‐bonding networks and ionic interactions in the active site channel. The catalytically important zinc ion is coordinated by the conserved Glu395 and histidine residues from a HExxH motif.


Nature Structural & Molecular Biology | 2003

Crystal structure of the BAFF-BAFF-R complex and its implications for receptor activation

Ho Min Kim; Kyung Sook Yu; Mi Eun Lee; Dong Ryeol Shin; Young Sang Kim; Sang-Gi Paik; Ook Joon Yoo; Hayyoung Lee; Jie-Oh Lee

B-cell activating factor (BAFF) is a key regulator of B-lymphocyte development. Its biological role is mediated by the specific receptors BCMA, TACI and BAFF-R. We have determined the crystal structure of the extracellular domain of BAFF-R bound to BAFF at a resolution of 3.3 Å. The cysteine-rich domain (CRD) of the BAFF-R extracellular domain adopts a β-hairpin structure and binds to the virus-like BAFF cage in a 1:1 molar ratio. The conserved DxL motif of BAFF-R is located on the tip of the β-turn and is indispensable in the binding of BAFF. The crystal structure shows that a unique dimeric contact occurs between the BAFF-R monomers in the virus-like cage complex. The extracellular domain of TACI contains two CRDs, both of which contain the DxL motif. Modeling of TACI–BAFF complex suggests that both CDRs simultaneously interact with the BAFF dimer in the virus-like cage.


Journal of Biological Chemistry | 2006

Activation of Ras Up-regulates Pro-apoptotic BNIP3 in Nitric Oxide-induced Cell Death

Hyun-Jung An; Oky Maeng; Kyoung-Hee Kang; Jie-Oh Lee; Young Sang Kim; Sang-Gi Paik; Hayyoung Lee

Nitric oxide (NO) produced by NO synthases causes nitration and nitrosylation of cellular factors. We have shown previously that endogenously produced or exogenously added NO induces expression of BNIP3 (Bcl-2/adenovirus E1B 19kDa-interacting protein 3), leading to death of macrophages (Yook, Y.-H., Kang, K.-H., Maeng, O., Kim, T.-R., Lee, J.-O., Kang, K.-i., Kim, Y.-S., Paik, S.-G., and Lee, H. (2004) Biochem. Biophys. Res. Commun. 321, 298–305). We now provide evidence that Ras mediates NO-induced BNIP3 expression via the MEK/ERK/hypoxia-inducible factor (HIF)-1 pathway. (a) ras-Q61L, a constitutively active form of Ras, up-regulated BNIP3 protein expression by enhancing Bnip3 promoter activity, and ras-S17N, a dominant-negative form, and ras-C118S, an S-nitrosylation mutant, blocked NO-induced BNIP3 expression, suggesting that Ras acts downstream of NO and that NO activates Ras by nitrosylation. (b) U0126, a specific MEK inhibitor, completely abolished BNIP3 expression and the stimulation of promoter activity by NO and Ras, whereas 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, SB203580, and wortmannin, specific inhibitors of soluble guanylyl cyclase, p38 MAPK, and phosphatidylinositol 3-kinase, respectively, had no effect. Ras, MEK1/2, and ERK1/2 were sequentially activated by NO treatment of macrophages. (c) Mutation of the HIF-1-binding site (hypoxia-response element) in the Bnip3 promoter abolished BNIP3 induction, and HIF-1α was strongly induced by NO. (d) Transient expression of activated Ras promoted macrophage death, as did NO, and this Ras-mediated cell death was inhibited by silencing BNIP3 expression. These results suggest that NO-induced death of macrophages is mediated, at least in part, by BNIP3 induction.


Journal of Biological Chemistry | 2011

Crystallographic and mutational analysis of the CD40-CD154 complex and its implications for receptor activation.

Hyun-Jung An; Young-Jin Kim; Dong Hyun Song; Beom Suk Park; Ho Min Kim; Ju Dong Lee; Sang-Gi Paik; Jie-Oh Lee; Hayyoung Lee

CD40 is a tumor necrosis factor receptor (TNFR) family protein that plays an important role in B cell development. CD154/CD40L is the physiological ligand of CD40. We have determined the crystal structure of the CD40-CD154 complex at 3.5 Å resolution. The binding site of CD40 is located in a crevice formed between two CD154 subunits. Charge complementarity plays a critical role in the CD40-CD154 interaction. Some of the missense mutations found in hereditary hyper-IgM syndrome can be mapped to the CD40-CD154 interface. The CD40 interaction area of one of the CD154 subunits is twice as large as that of the other subunit forming the binding crevice. This is because cysteine-rich domain 3 (CRD3) of CD40 has a disulfide bridge in an unusual position that alters the direction of the ladder-like structure of CD40. The Ser132 loop of CD154 is not involved in CD40 binding but its substitution significantly reduces p38- and ERK-dependent signaling by CD40, whereas JNK-dependent signaling is not affected. These findings suggest that ligand-induced di- or trimerization is necessary but not sufficient for complete activation of CD40.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Higd-1a interacts with Opa1 and is required for the morphological and functional integrity of mitochondria

Hyun-Jung An; Geunyoung Cho; Jie-Oh Lee; Sang-Gi Paik; Young Sang Kim; Hayyoung Lee

The activity and morphology of mitochondria are maintained by dynamic fusion and fission processes regulated by a group of proteins residing in, or attached to, their inner and outer membranes. Hypoxia-induced gene domain protein-1a (Higd-1a)/HIMP1-a/HIG1, a mitochondrial inner membrane protein, plays a role in cell survival under hypoxic conditions. In the present study, we showed that Higd-1a depletion resulted in mitochondrial fission, depletion of mtDNA, disorganization of cristae, and growth retardation. We demonstrated that Higd-1a functions by specifically binding to Optic atrophy 1 (Opa1), a key element in fusion of the inner membrane. In the absence of Higd-1a, Opa1 was cleaved, resulting in the loss of its long isoforms and accumulation of small soluble forms. The small forms of Opa1 do not interact with Higd-1a, suggesting that a part of Opa1 in or proximal to the membrane is required for that interaction. Opa1 cleavage, mitochondrial fission, and cell death induced by dissipation of the mitochondrial membrane potential were significantly inhibited by ectopic expression of Higd-1a. Furthermore, growth inhibition due to Higd-1a depletion could be overcome by overexpression of a noncleavable form of Opa1. Collectively, our observations demonstrate that Higd-1a inhibits Opa1 cleavage and is required for mitochondrial fusion by virtue of its interaction with Opa1.

Collaboration


Dive into the Hayyoung Lee's collaboration.

Top Co-Authors

Avatar

Sang-Gi Paik

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Hyun-Jung An

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Oky Maeng

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Young Sang Kim

Chungnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge