Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hazuki Takahashi is active.

Publication


Featured researches published by Hazuki Takahashi.


Nature | 2012

Landscape of transcription in human cells

Sarah Djebali; Carrie A. Davis; Angelika Merkel; Alexander Dobin; Timo Lassmann; Ali Mortazavi; Andrea Tanzer; Julien Lagarde; Wei Lin; Felix Schlesinger; Chenghai Xue; Georgi K. Marinov; Jainab Khatun; Brian A. Williams; Chris Zaleski; Joel Rozowsky; Maik Röder; Felix Kokocinski; Rehab F. Abdelhamid; Tyler Alioto; Igor Antoshechkin; Michael T. Baer; Nadav S. Bar; Philippe Batut; Kimberly Bell; Ian Bell; Sudipto Chakrabortty; Xian Chen; Jacqueline Chrast; Joao Curado

Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell’s regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.


Nature Genetics | 2009

The regulated retrotransposon transcriptome of mammalian cells

Geoffrey J. Faulkner; Yasumasa Kimura; Carsten O. Daub; Shivangi Wani; Charles Plessy; Katharine M. Irvine; Kate Schroder; Nicole Cloonan; Anita L Steptoe; Timo Lassmann; Kazunori Waki; Nadine Hornig; Takahiro Arakawa; Hazuki Takahashi; Jun Kawai; Alistair R. R. Forrest; Harukazu Suzuki; Yoshihide Hayashizaki; David A. Hume; Valerio Orlando; Sean M. Grimmond; Piero Carninci

Although repetitive elements pervade mammalian genomes, their overall contribution to transcriptional activity is poorly defined. Here, as part of the FANTOM4 project, we report that 6–30% of cap-selected mouse and human RNA transcripts initiate within repetitive elements. Analysis of approximately 250,000 retrotransposon-derived transcription start sites shows that the associated transcripts are generally tissue specific, coincide with gene-dense regions and form pronounced clusters when aligned to full-length retrotransposon sequences. Retrotransposons located immediately 5′ of protein-coding loci frequently function as alternative promoters and/or express noncoding RNAs. More than a quarter of RefSeqs possess a retrotransposon in their 3′ UTR, with strong evidence for the reduced expression of these transcripts relative to retrotransposon-free transcripts. Finally, a genome-wide screen identifies 23,000 candidate regulatory regions derived from retrotransposons, in addition to more than 2,000 examples of bidirectional transcription. We conclude that retrotransposon transcription has a key influence upon the transcriptional output of the mammalian genome.


Genome Research | 2011

Genome-wide analysis of promoter architecture in Drosophila melanogaster

Roger A. Hoskins; Jane M. Landolin; James B. Brown; Jeremy E. Sandler; Hazuki Takahashi; Timo Lassmann; Charles Yu; Benjamin W. Booth; Dayu Zhang; Kenneth H. Wan; Li Yang; Nathan Boley; Justen Andrews; Thomas C. Kaufman; Brenton R. Graveley; Peter J. Bickel; Piero Carninci; Joseph W. Carlson; Susan E. Celniker

Core promoters are critical regions for gene regulation in higher eukaryotes. However, the boundaries of promoter regions, the relative rates of initiation at the transcription start sites (TSSs) distributed within them, and the functional significance of promoter architecture remain poorly understood. We produced a high-resolution map of promoters active in the Drosophila melanogaster embryo by integrating data from three independent and complementary methods: 21 million cap analysis of gene expression (CAGE) tags, 1.2 million RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE) reads, and 50,000 cap-trapped expressed sequence tags (ESTs). We defined 12,454 promoters of 8037 genes. Our analysis indicates that, due to non-promoter-associated RNA background signal, previous studies have likely overestimated the number of promoter-associated CAGE clusters by fivefold. We show that TSS distributions form a complex continuum of shapes, and that promoters active in the embryo and adult have highly similar shapes in 95% of cases. This suggests that these distributions are generally determined by static elements such as local DNA sequence and are not modulated by dynamic signals such as histone modifications. Transcription factor binding motifs are differentially enriched as a function of promoter shape, and peaked promoter shape is correlated with both temporal and spatial regulation of gene expression. Our results contribute to the emerging view that core promoters are functionally diverse and control patterning of gene expression in Drosophila and mammals.


Nature Protocols | 2012

5′ end–centered expression profiling using cap-analysis gene expression and next-generation sequencing

Hazuki Takahashi; Timo Lassmann; Mitsuyoshi Murata; Piero Carninci

Cap-analysis gene expression (CAGE) provides accurate high-throughput measurement of RNA expression. CAGE allows mapping of all the initiation sites of both capped coding and noncoding RNAs. In addition, transcriptional start sites within promoters are characterized at single-nucleotide resolution. The latter allows the regulatory inputs driving gene expression to be studied, which in turn enables the construction of transcriptional networks. Here we provide an optimized protocol for the construction of CAGE libraries on the basis of the preparation of 27-nt-long tags corresponding to initial bases at the 5′ ends of capped RNAs. We have optimized the methods using simple steps based on filtration, which altogether takes 4 d to complete. The CAGE tags can be readily sequenced with Illumina sequencers, and upon modification they are also amenable to sequencing using other platforms.


Nature Methods | 2010

Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan

Charles Plessy; Nicolas Bertin; Hazuki Takahashi; Roberto Simone; Salimullah; Timo Lassmann; Morana Vitezic; Jessica Severin; Signe Olivarius; Dejan Lazarevic; Nadine Hornig; Valerio Orlando; Ian Bell; Hui Gao; Jacqueline Dumais; Philipp Kapranov; Huaien Wang; Carrie A. Davis; Thomas R. Gingeras; Jun Kawai; Carsten O. Daub; Yoshihide Hayashizaki; Stefano Gustincich; Piero Carninci

Large-scale sequencing projects have revealed an unexpected complexity in the origins, structures and functions of mammalian transcripts. Many loci are known to produce overlapping coding and noncoding RNAs with capped 5′ ends that vary in size. Methods to identify the 5′ ends of transcripts will facilitate the discovery of new promoters and 5′ ends derived from secondary capping events. Such methods often require high input amounts of RNA not obtainable from highly refined samples such as tissue microdissections and subcellular fractions. Therefore, we developed nano–cap analysis of gene expression (nanoCAGE), a method that captures the 5′ ends of transcripts from as little as 10 ng of total RNA, and CAGEscan, a mate-pair adaptation of nanoCAGE that captures the transcript 5′ ends linked to a downstream region. Both of these methods allow further annotation-agnostic studies of the complex human transcriptome.


Nature Structural & Molecular Biology | 2013

Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA

Anas Fadloun; Stephanie Gras; Bernard Jost; Céline Ziegler-Birling; Hazuki Takahashi; Eduardo Gorab; Piero Carninci; Maria-Elena Torres-Padilla

How a more plastic chromatin state is maintained and reversed during development is unknown. Heterochromatin-mediated silencing of repetitive elements occurs in differentiated cells. Here, we used repetitive elements, including retrotransposons, as model loci to address how and when heterochromatin forms during development. RNA sequencing throughout early mouse embryogenesis revealed that repetitive-element expression is dynamic and stage specific, with most repetitive elements becoming repressed before implantation. We show that LINE-1 and IAP retrotransposons become reactivated from both parental genomes after fertilization. Chromatin immunoprecipitation for H3K4me3 and H3K9me3 in 2- and 8-cell embryos indicates that their developmental silencing follows loss of activating marks rather than acquisition of conventional heterochromatic marks. Furthermore, short LINE-1 RNAs regulate LINE-1 transcription in vivo. Our data indicate that reprogramming after mammalian fertilization comprises a robust transcriptional activation of retrotransposons and that repetitive elements are initially regulated through RNA.


Genome Research | 2013

Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis

Chirag Nepal; Yavor Hadzhiev; Christopher Previti; Vanja Haberle; Nan Li; Hazuki Takahashi; Ana Maria Suzuki; Ying Sheng; Rehab F. Abdelhamid; Santosh Anand; Jochen Gehrig; Altuna Akalin; Christel Kockx; Antoine van der Sloot; Wilfred van IJcken; Olivier Armant; Sepand Rastegar; Craig A. Watson; Uwe Strähle; Elia Stupka; Piero Carninci; Boris Lenhard; Ferenc Müller

Spatiotemporal control of gene expression is central to animal development. Core promoters represent a previously unanticipated regulatory level by interacting with cis-regulatory elements and transcription initiation in different physiological and developmental contexts. Here, we provide a first and comprehensive description of the core promoter repertoire and its dynamic use during the development of a vertebrate embryo. By using cap analysis of gene expression (CAGE), we mapped transcription initiation events at single nucleotide resolution across 12 stages of zebrafish development. These CAGE-based transcriptome maps reveal genome-wide rules of core promoter usage, structure, and dynamics, key to understanding the control of gene regulation during vertebrate ontogeny. They revealed the existence of multiple classes of pervasive intra- and intergenic post-transcriptionally processed RNA products and their developmental dynamics. Among these RNAs, we report splice donor site-associated intronic RNA (sRNA) to be specific to genes of the splicing machinery. For the identification of conserved features, we compared the zebrafish data sets to the first CAGE promoter map of Tetraodon and the existing human CAGE data. We show that a number of features, such as promoter type, newly discovered promoter properties such as a specialized purine-rich initiator motif, as well as sRNAs and the genes in which they are detected, are conserved in mammalian and Tetraodon CAGE-defined promoter maps. The zebrafish developmental promoterome represents a powerful resource for studying developmental gene regulation and revealing promoter features shared across vertebrates.


Methods of Molecular Biology | 2012

CAGE (cap analysis of gene expression): a protocol for the detection of promoter and transcriptional networks.

Hazuki Takahashi; Sachiko Kato; Mitsuyoshi Murata; Piero Carninci

We provide here a protocol for the preparation of cap-analysis gene expression (CAGE) libraries, which allows for measuring the expression of eukaryotic capped RNAs and simultaneously map the promoter regions. The presented protocol simplifies the previously published ones and moreover produces tags that are 27 nucleotides long, which facilitates mapping to the genome. The protocol takes less than 5 days to complete and presents a notable improvement compared to previously published versions.


Frontiers in Cellular Neuroscience | 2015

SINEUPs are modular antisense long non-coding RNAs that increase synthesis of target proteins in cells

Silvia Zucchelli; Francesca Fasolo; Roberta Russo; Laura Cimatti; Laura Patrucco; Hazuki Takahashi; Michael H. Jones; Claudio Santoro; Daniele Sblattero; Diego Cotella; Francesca Persichetti; Piero Carninci; Stefano Gustincich

Despite recent efforts in discovering novel long non-coding RNAs (lncRNAs) and unveiling their functions in a wide range of biological processes their applications as biotechnological or therapeutic tools are still at their infancy. We have recently shown that AS Uchl1, a natural lncRNA antisense to the Parkinsons disease-associated gene Ubiquitin carboxyl-terminal esterase L1 (Uchl1), is able to increase UchL1 protein synthesis at post-transcriptional level. Its activity requires two RNA elements: an embedded inverted SINEB2 sequence to increase translation and the overlapping region to target its sense mRNA. This functional organization is shared with several mouse lncRNAs antisense to protein coding genes. The potential use of AS Uchl1-derived lncRNAs as enhancers of target mRNA translation remains unexplored. Here we define AS Uchl1 as the representative member of a new functional class of natural and synthetic antisense lncRNAs that activate translation. We named this class of RNAs SINEUPs for their requirement of the inverted SINEB2 sequence to UP-regulate translation in a gene-specific manner. The overlapping region is indicated as the Binding Doman (BD) while the embedded inverted SINEB2 element is the Effector Domain (ED). By swapping BD, synthetic SINEUPs are designed targeting mRNAs of interest. SINEUPs function in an array of cell lines and can be efficiently directed toward N-terminally tagged proteins. Their biological activity is retained in a miniaturized version within the range of small RNAs length. Its modular structure was exploited to successfully design synthetic SINEUPs targeting endogenous Parkinsons disease-associated DJ-1 and proved to be active in different neuronal cell lines. In summary, SINEUPs represent the first scalable tool to increase synthesis of proteins of interest. We propose SINEUPs as reagents for molecular biology experiments, in protein manufacturing as well as in therapy of haploinsufficiencies.


RNA Biology | 2015

SINEUPs: A new class of natural and synthetic antisense long non-coding RNAs that activate translation

Silvia Zucchelli; Diego Cotella; Hazuki Takahashi; Claudia Carrieri; Laura Cimatti; Francesca Fasolo; M. H. Jones; Daniele Sblattero; Remo Sanges; Claudio Santoro; Francesca Persichetti; Piero Carninci; Stefano Gustincich

Over the past 10 years, it has emerged that pervasive transcription in mammalian genomes has a tremendous impact on several biological functions. Most of transcribed RNAs are lncRNAs and repetitive elements. In this review, we will detail the discovery of a new functional class of natural and synthetic antisense lncRNAs that stimulate translation of sense mRNAs. These molecules have been named SINEUPs since their function requires the activity of an embedded inverted SINEB2 sequence to UP-regulate translation. Natural SINEUPs suggest that embedded Transposable Elements may represent functional domains in long non-coding RNAs. Synthetic SINEUPs may be designed by targeting the antisense sequence to the mRNA of choice representing the first scalable tool to increase protein synthesis of potentially any gene of interest. We will discuss potential applications of SINEUP technology in the field of molecular biology experiments, in protein manufacturing as well as in therapy of haploinsufficiencies.

Collaboration


Dive into the Hazuki Takahashi's collaboration.

Top Co-Authors

Avatar

Piero Carninci

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Stefano Gustincich

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Silvia Zucchelli

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Timo Lassmann

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Claudio Santoro

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar

Diego Cotella

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar

Francesca Fasolo

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge