Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heath Ecroyd is active.

Publication


Featured researches published by Heath Ecroyd.


FEBS Journal | 2009

The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds

Sean A. Hudson; Heath Ecroyd; Tak W. Kee; John A. Carver

Thioflavin T (ThT) dye fluorescence is used regularly to quantify the formation and inhibition of amyloid fibrils in the presence of anti‐amyloidogenic compounds such as polyphenols. However, in this study, it was shown, using three polyphenolics (curcumin, quercetin and resveratrol), that ThT fluorescence should be used with caution in the presence of such exogenous compounds. The strong absorptive and fluorescent properties of quercetin and curcumin were found to significantly bias the ThT fluorescence readings in both in situ real‐time ThT assays and single time‐point dilution ThT‐type assays. The presence of curcumin at concentrations as low as 0.01 and 1 μm was sufficient to interfere with the ThT fluorescence associated with fibrillar amyloid‐β(1‐42) (0.5 μm) and fibrillar reduced and carboxymethylated κ‐casein (50 μm), respectively. The ThT fluorescence associated with fibrillar amyloid‐β(1‐42) was also biased using higher concentrations of resveratrol, a polyphenol that is not spectroscopically active at the wavelengths of ThT fluorescence, implying that there can be direct interactions between ThT and the exogenous compound and/or competitive binding with ThT for the fibrils. Thus, in all cases where ThT is used in the presence of an exogenous compound, biases for amyloid‐associated ThT fluorescence should be tested, regardless of whether the additive is spectroscopically active. Simple methods to conduct these tests were described. The Congo red spectral shift assay is demonstrated as a more viable spectrophotometric alternative to ThT, but allied methods, such as transmission electron microscopy, should also be used to assess fibril formation independently of dye‐based assays.


Cellular and Molecular Life Sciences | 2009

Crystallin proteins and amyloid fibrils

Heath Ecroyd; John A. Carver

Abstract.Improper protein folding (misfolding) can lead to the formation of disordered (amorphous) or ordered (amyloid fibril) aggregates. The major lens protein, α-crystallin, is a member of the small heat-shock protein (sHsp) family of intracellular molecular chaperone proteins that prevent protein aggregation. Whilst the chaperone activity of sHsps against amorphously aggregating proteins has been well studied, its action against fibril-forming proteins has received less attention despite the presence of sHsps in deposits found in fibril-associated diseases (e.g. Alzheimer’s and Parkinson’s). In this review, the literature on the interaction of αB-crystallin and other sHsps with fibril-forming proteins is summarized. In particular, the ability of sHsps to prevent fibril formation, their mechanisms of action and the possible in vivo consequences of such associations are discussed. Finally, the fibril-forming propensity of the crystallin proteins and its implications for cataract formation are described along with the potential use of fibrillar crystallin proteins as bionanomaterials.


Biochemical Journal | 2007

Mimicking phosphorylation of αB-crystallin affects its chaperone activity

Heath Ecroyd; Sarah Meehan; Joseph Horwitz; J. Andrew Aquilina; Justin L. P. Benesch; Carol V. Robinson; Cait E. MacPhee; John A. Carver

AlphaB-crystallin is a member of the sHsp (small heat-shock protein) family that prevents misfolded target proteins from aggregating and precipitating. Phosphorylation at three serine residues (Ser19, Ser45 and Ser59) is a major post-translational modification that occurs to alphaB-crystallin. In the present study, we produced recombinant proteins designed to mimic phosphorylation of alphaB-crystallin by incorporating a negative charge at these sites. We employed these mimics to undertake a mechanistic and structural investigation of the effect of phosphorylation on the chaperone activity of alphaB-crystallin to protect against two types of protein misfolding, i.e. amorphous aggregation and amyloid fibril assembly. We show that mimicking phosphorylation of alphaB-crystallin results in more efficient chaperone activity against both heat-induced and reduction-induced amorphous aggregation of target proteins. Mimick-ing phosphorylation increased the chaperone activity of alphaB-crystallin against one amyloid-forming target protein (kappa-casein), but decreased it against another (ccbeta-Trp peptide). We observed that both target protein identity and solution (buffer) conditions are critical factors in determining the relative chaperone ability of wild-type and phosphorylated alphaB-crystallins. The present study provides evidence for the regulation of the chaperone activity of alphaB-crystallin by phosphorylation and indicates that this may play an important role in alleviating the pathogenic effects associated with protein conformational diseases.


Journal of Dairy Science | 2013

Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods

Carl Holt; John A. Carver; Heath Ecroyd; David C. Thorn

A typical casein micelle contains thousands of casein molecules, most of which form thermodynamically stable complexes with nanoclusters of amorphous calcium phosphate. Like many other unfolded proteins, caseins have an actual or potential tendency to assemble into toxic amyloid fibrils, particularly at the high concentrations found in milk. Fibrils do not form in milk because an alternative aggregation pathway is followed that results in formation of the casein micelle. As a result of forming micelles, nutritious milk can be secreted and stored without causing either pathological calcification or amyloidosis of the mothers mammary tissue. The ability to sequester nanoclusters of amorphous calcium phosphate in a stable complex is not unique to caseins. It has been demonstrated using a number of noncasein secreted phosphoproteins and may be of general physiological importance in preventing calcification of other biofluids and soft tissues. Thus, competent noncasein phosphoproteins have similar patterns of phosphorylation and the same type of flexible, unfolded conformation as caseins. The ability to suppress amyloid fibril formation by forming an alternative amorphous aggregate is also not unique to caseins and underlies the action of molecular chaperones such as the small heat-shock proteins. The open structure of the protein matrix of casein micelles is fragile and easily perturbed by changes in its environment. Perturbations can cause the polypeptide chains to segregate into regions of greater and lesser density. As a result, the reliable determination of the native structure of casein micelles continues to be extremely challenging. The biological functions of caseins, such as their chaperone activity, are determined by their composition and flexible conformation and by how the casein polypeptide chains interact with each other. These same properties determine how caseins behave in the manufacture of many dairy products and how they can be used as functional ingredients in other foods.


Journal of Molecular Biology | 2009

(-)-Epigallocatechin-3-gallate (EGCG) maintains κ-casein in its pre-fibrillar state without redirecting its aggregation pathway

Sean A. Hudson; Heath Ecroyd; Francis C. Dehle; Ian F. Musgrave; John A. Carver

The polyphenol (-)-epigallocatechin-3-gallate (EGCG) has recently attracted much research interest in the field of protein-misfolding diseases because of its potent anti-amyloid activity against amyloid-beta, alpha-synuclein and huntingtin, the amyloid-fibril-forming proteins involved in Alzheimers, Parkinsons and Huntingtons diseases, respectively. EGCG redirects the aggregation of these polypeptides to a disordered off-folding pathway that results in the formation of non-toxic amorphous aggregates. Whether this anti-fibril activity is specific to these disease-related target proteins or is more generic remains to be established. In addition, the mechanism by which EGCG exerts its effects, as with all anti-amyloidogenic polyphenols, remains unclear. To address these aspects, we have investigated the ability of EGCG to inhibit amyloidogenesis of the generic model fibril-forming protein RCMkappa-CN (reduced and carboxymethylated kappa-casein) and thereby protect pheochromocytoma-12 cells from RCMkappa-CN amyloid-induced toxicity. We found that EGCG potently inhibits in vitro fibril formation by RCMkappa-CN [the IC(50) for 50 microM RCMkappa-CN is 13+/-1 microM]. Biophysical studies reveal that EGCG prevents RCMkappa-CN fibril formation by stabilising RCMkappa-CN in its native-like state rather than by redirecting its aggregation to the disordered, amorphous aggregation pathway. Thus, while it appears that EGCG is a generic inhibitor of amyloid-fibril formation, the mechanism by which it achieves this inhibition is specific to the target fibril-forming polypeptide. It is proposed that EGCG is directed to the amyloidogenic sheet-turn-sheet motif of monomeric RCMkappa-CN with high affinity by strong non-specific hydrophobic associations. Additional non-covalent pi-pi stacking interactions between the polyphenolic and aromatic residues common to the amyloidogenic sequence are also implicated.


Biophysical Journal | 2010

The Interaction of αB-Crystallin with Mature α-Synuclein Amyloid Fibrils Inhibits Their Elongation

Christopher A. Waudby; Tuomas P. J. Knowles; Glyn L. Devlin; Jeremy N. Skepper; Heath Ecroyd; John A. Carver; Mark E. Welland; John Christodoulou; Christopher M. Dobson; Sarah Meehan

αB-Crystallin is a small heat-shock protein (sHsp) that is colocalized with α-synuclein (αSyn) in Lewy bodies—the pathological hallmarks of Parkinsons disease—and is an inhibitor of αSyn amyloid fibril formation in an ATP-independent manner in vitro. We have investigated the mechanism underlying the inhibitory action of sHsps, and here we establish, by means of a variety of biophysical techniques including immunogold labeling and nuclear magnetic resonance spectroscopy, that αB-crystallin interacts with αSyn, binding along the length of mature amyloid fibrils. By measurement of seeded fibril elongation kinetics, both in solution and on a surface using a quartz crystal microbalance, this binding is shown to strongly inhibit further growth of the fibrils. The binding is also demonstrated to shift the monomer-fibril equilibrium in favor of dissociation. We believe that this mechanism, by which a sHsp interacts with mature amyloid fibrils, could represent an additional and potentially generic means by which at least some chaperones protect against amyloid aggregation and limit the onset of misfolding diseases.


Journal of Cell Science | 2004

Analysis of the mechanism by which calcium negatively regulates the tyrosine phosphorylation cascade associated with sperm capacitation.

Mark A. Baker; Louise Hetherington; Heath Ecroyd; Shaun D. Roman; R. John Aitken

The capacitation of mammalian spermatozoa involves the activation of a cAMP-mediated signal transduction pathway that drives tyrosine phosphorylation via mechanisms that are unique to this cell type. Controversy surrounds the impact of extracellular calcium on this process, with positive and negative effects being recorded in independent publications. We clearly demonstrate that the presence of calcium in the external medium decreases tyrosine phosphorylation in both human and mouse spermatozoa. Under these conditions, a rise in intracellular pH was recorded, however, this event was not responsible for the observed changes in phosphotyrosine expression. Rather, the impact of calcium on tyrosine phosphorylation in these cells was associated with an unexpected change in the intracellular availability of ATP. Thus, the ATP content of both human and mouse spermatozoa fell significantly when these cells were incubated in the presence of external calcium. Furthermore, the removal of glucose, or addition of 2-deoxyglucose, decreased ATP levels within human spermatozoon populations and induced a corresponding decline in phosphotyrosine expression. In contrast, the mitochondrial inhibitor rotenone had no effect on either ATP levels or tyrosine phosphorylation. Addition of the affinity-labeling probe 8-N3 ATP confirmed our prediction that spermatozoa have many calcium-dependent ATPases. Moreover, addition of the ATPase inhibitor thapsigargin, increased intracellular calcium levels, decreased ATP and suppressed tyrosine phosphorylation. Based on these findings, the present study indicates that extracellular calcium suppresses tyrosine phosphorylation by decreasing the availability of intracellular ATP, and not by activating tyrosine phosphatases or inhibiting tyrosine kinases as has been previously suggested.


Proceedings of the National Academy of Sciences of the United States of America | 2014

The structured core domain of αB-crystallin can prevent amyloid fibrillation and associated toxicity

Georg K. A. Hochberg; Heath Ecroyd; Cong Liu; Dezerae Cox; Duilio Cascio; Michael R. Sawaya; Miranda Collier; James C. Stroud; John A. Carver; Andrew J. Baldwin; Carol V. Robinson; David Eisenberg; Justin L. P. Benesch; Arthur Laganowsky

Significance We find that the core domain of the human molecular chaperone αB-crystallin can function effectively in preventing protein aggregation and amyloid toxicity. The core domain represents only half the total sequence of the protein, but it is one of the most potent known inhibitors of the aggregation of amyloid-β, a process implicated in Alzheimer’s disease. We have determined high-resolution structures of this core domain and investigated its biophysical properties in solution. We find that the excised domain efficiently prevents amyloid aggregation and thereby reduces the toxicity of the resulting aggregates to cells. The structures of these domains that we present should represent useful scaffolds for the design of novel amyloid inhibitors. Mammalian small heat-shock proteins (sHSPs) are molecular chaperones that form polydisperse and dynamic complexes with target proteins, serving as a first line of defense in preventing their aggregation into either amorphous deposits or amyloid fibrils. Their apparently broad target specificity makes sHSPs attractive for investigating ways to tackle disorders of protein aggregation. The two most abundant sHSPs in human tissue are αB-crystallin (ABC) and HSP27; here we present high-resolution structures of their core domains (cABC, cHSP27), each in complex with a segment of their respective C-terminal regions. We find that both truncated proteins dimerize, and although this interface is labile in the case of cABC, in cHSP27 the dimer can be cross-linked by an intermonomer disulfide linkage. Using cHSP27 as a template, we have designed an equivalently locked cABC to enable us to investigate the functional role played by oligomerization, disordered N and C termini, subunit exchange, and variable dimer interfaces in ABC. We have assayed the ability of the different forms of ABC to prevent protein aggregation in vitro. Remarkably, we find that cABC has chaperone activity comparable to that of the full-length protein, even when monomer dissociation is restricted through disulfide linkage. Furthermore, cABC is a potent inhibitor of amyloid fibril formation and, by slowing the rate of its aggregation, effectively reduces the toxicity of amyloid-β peptide to cells. Overall we present a small chaperone unit together with its atomic coordinates that potentially enables the rational design of more effective chaperones and amyloid inhibitors.


Biology of Reproduction | 2003

Tyrosine Phosphorylation of HSP-90 During Mammalian Sperm Capacitation

Heath Ecroyd; Russell C. Jones; R. John Aitken

Abstract The process of sperm capacitation is correlated with activation of a signal transduction pathway leading to protein tyrosine phosphorylation. Whereas phosphotyrosine expression is an essential prerequisite for fertilization, the proteins that are phosphorylated during capacitation have not yet been identified. In the present study, we observed that a major target of this signaling pathway is the molecular chaperone protein, heat shock protein (HSP)-86, a member of the HSP-90 family of HSPs. We used cross-immunoprecipitation experiments to confirm the tyrosine phosphorylation of HSP-86, a process that is not inhibited by the ansamycin antibiotic, geldanamycin. The general significance of these findings was confirmed by studies in which HSP-90 was also found to be tyrosine phosphorylated in human and rat spermatozoa when incubated under conditions that support capacitation. To our knowledge, these results represent the first report of a protein that undergoes tyrosine phosphorylation during mouse sperm capacitation and the first study implicating molecular chaperones in the processes by which mammalian spermatozoa gain the ability to fertilize the oocyte.


Cellular and Molecular Life Sciences | 2015

Small heat-shock proteins: important players in regulating cellular proteostasis

Teresa M. Treweek; Sarah Meehan; Heath Ecroyd; John A. Carver

Small heat-shock proteins (sHsps) are a diverse family of intra-cellular molecular chaperone proteins that play a critical role in mitigating and preventing protein aggregation under stress conditions such as elevated temperature, oxidation and infection. In doing so, they assist in the maintenance of protein homeostasis (proteostasis) thereby avoiding the deleterious effects that result from loss of protein function and/or protein aggregation. The chaperone properties of sHsps are therefore employed extensively in many tissues to prevent the development of diseases associated with protein aggregation. Significant progress has been made of late in understanding the structure and chaperone mechanism of sHsps. In this review, we discuss some of these advances, with a focus on mammalian sHsp hetero-oligomerisation, the mechanism by which sHsps act as molecular chaperones to prevent both amorphous and fibrillar protein aggregation, and the role of post-translational modifications in sHsp chaperone function, particularly in the context of disease.

Collaboration


Dive into the Heath Ecroyd's collaboration.

Top Co-Authors

Avatar

John A. Carver

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Meehan

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dezerae Cox

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brett Nixon

University of Newcastle

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge