Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heather Dionne is active.

Publication


Featured researches published by Heather Dionne.


eLife | 2014

The neuronal architecture of the mushroom body provides a logic for associative learning

Yoshinori Aso; Daisuke Hattori; Yang Yu; Rebecca M. Johnston; Nirmala Iyer; Teri-T B. Ngo; Heather Dionne; L. F. Abbott; Richard Axel; Hiromu Tanimoto; Gerald M. Rubin

We identified the neurons comprising the Drosophila mushroom body (MB), an associative center in invertebrate brains, and provide a comprehensive map describing their potential connections. Each of the 21 MB output neuron (MBON) types elaborates segregated dendritic arbors along the parallel axons of ∼2000 Kenyon cells, forming 15 compartments that collectively tile the MB lobes. MBON axons project to five discrete neuropils outside of the MB and three MBON types form a feedforward network in the lobes. Each of the 20 dopaminergic neuron (DAN) types projects axons to one, or at most two, of the MBON compartments. Convergence of DAN axons on compartmentalized Kenyon cell–MBON synapses creates a highly ordered unit that can support learning to impose valence on sensory representations. The elucidation of the complement of neurons of the MB provides a comprehensive anatomical substrate from which one can infer a functional logic of associative olfactory learning and memory. DOI: http://dx.doi.org/10.7554/eLife.04577.001


Journal of Cell Biology | 2004

Domains controlling cell polarity and proliferation in the Drosophila tumor suppressor Scribble

Jennifer Zeitler; Cynthia P. Hsu; Heather Dionne; David Bilder

Cell polarity and cell proliferation can be coupled in animal tissues, but how they are coupled is not understood. In Drosophila imaginal discs, loss of the neoplastic tumor suppressor gene scribble (scrib), which encodes a multidomain scaffolding protein, disrupts epithelial organization and also causes unchecked proliferation. Using an allelic series of mutations along with rescuing transgenes, we have identified domain requirements for polarity, proliferation control, and other Scrib functions. The leucine-rich repeats (LRR) tether Scrib to the plasma membrane, are both necessary and sufficient to organize a polarized epithelial monolayer, and are required for all proliferation control. The PDZ domains, which recruit the LRR to the junctional complex, are dispensable for overall epithelial organization. PDZ domain absence leads to mild polarity defects accompanied by moderate overproliferation, but the PDZ domains alone are insufficient to provide any Scrib function in mutant discs. We suggest a model in which Scrib, via the activity of the LRR, governs proliferation primarily by regulating apicobasal polarity.


PLOS Biology | 2008

OSM-11 facilitates LIN-12 Notch signaling during Caenorhabditis elegans vulval development.

Hidetoshi Komatsu; Michael Y. Chao; Jonah Larkins-Ford; Mark E. Corkins; Gerard A. Somers; Timothy M. Tucey; Heather Dionne; Jamie White; Khursheed Wani; Mike Boxem; Anne C. Hart

Notch signaling is critical for cell fate decisions during development. Caenorhabditis elegans and vertebrate Notch ligands are more diverse than classical Drosophila Notch ligands, suggesting possible functional complexities. Here, we describe a developmental role in Notch signaling for OSM-11, which has been previously implicated in defecation and osmotic resistance in C. elegans. We find that complete loss of OSM-11 causes defects in vulval precursor cell (VPC) fate specification during vulval development consistent with decreased Notch signaling. OSM-11 is a secreted, diffusible protein that, like previously described C. elegans Delta, Serrate, and LAG-2 (DSL) ligands, can interact with the lineage defective-12 (LIN-12) Notch receptor extracellular domain. Additionally, OSM-11 and similar C. elegans proteins share a common motif with Notch ligands from other species in a sequence defined here as the Delta and OSM-11 (DOS) motif. osm-11 loss-of-function defects in vulval development are exacerbated by loss of other DOS-motif genes or by loss of the Notch ligand DSL-1, suggesting that DOS-motif and DSL proteins act together to activate Notch signaling in vivo. The mammalian DOS-motif protein Deltalike1 (DLK1) can substitute for OSM-11 in C. elegans development, suggesting that DOS-motif function is conserved across species. We hypothesize that C. elegans OSM-11 and homologous proteins act as coactivators for Notch receptors, allowing precise regulation of Notch receptor signaling in developmental programs in both vertebrates and invertebrates.


Current Biology | 2011

C. elegans Notch signaling regulates adult chemosensory response and larval molting quiescence.

Komudi Singh; Michael Y. Chao; Gerard A. Somers; Hidetoshi Komatsu; Mark E. Corkins; Jonah Larkins-Ford; Timothy M. Tucey; Heather Dionne; Melissa B. Walsh; Emma K. Beaumont; Douglas P. Hart; Shawn R. Lockery; Anne C. Hart

BACKGROUND The conserved DOS-motif proteins OSM-7 and OSM-11 function as coligands with canonical DSL (Delta, Serrate, and LAG-2) ligands to activate C. elegans Notch receptors during development. We report here that Notch ligands, coligands, and the receptors LIN-12 and GLP-1 regulate two C. elegans behaviors: chemosensory avoidance of octanol and quiescence during molting lethargus. RESULTS C. elegans lacking osm-7 or osm-11 are defective in their response to octanol. We find that OSM-11 is secreted from hypodermal seam cells into the pseudocoelomic body cavity and acts non-cell autonomously as a diffusible factor. OSM-11 acts with the DSL ligand LAG-2 to activate LIN-12 and GLP-1 Notch receptors in the neurons of adult animals, thereby regulating octanol avoidance response. In adult animals, overexpression of osm-11 and consequent Notch receptor activation induces anachronistic sleep-like quiescence. Perturbation of Notch signaling alters basal activity in adults as well as arousal thresholds and quiescence during molting lethargus. Genetic epistasis studies reveal that Notch signaling regulates quiescence via previously identified circuits and genetic pathways including the egl-4 cGMP-dependent kinase. CONCLUSIONS Our findings indicate that the conserved Notch pathway modulates behavior in adult C. elegans in response to environmental stress. Additionally, Notch signaling regulates sleep-like quiescence in C. elegans, suggesting that Notch may regulate sleep in other species.


Journal of Cell Biology | 2008

Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK activation in yeast

Nadia Vadaie; Heather Dionne; Darowan S. Akajagbor; Seth R. Nickerson; Damian J. Krysan; Paul J. Cullen

Signaling mucins are cell adhesion molecules that activate RAS/RHO guanosine triphosphatases and their effector mitogen-activated protein kinase (MAPK) pathways. We found that the Saccharomyces cerevisiae mucin Msb2p, which functions at the head of the Cdc42p-dependent MAPK pathway that controls filamentous growth, is processed into secreted and cell-associated forms. Cleavage of the extracellular inhibitory domain of Msb2p by the aspartyl protease Yps1p generated the active form of the protein by a mechanism incorporating cellular nutritional status. Activated Msb2p functioned through the tetraspan protein Sho1p to induce MAPK activation as well as cell polarization, which involved the Cdc42p guanine nucleotide exchange factor Cdc24p. We postulate that cleavage-dependent activation is a general feature of signaling mucins, which brings to light a novel regulatory aspect of this class of signaling adhesion molecule.


Molecular Biology of the Cell | 2008

Regulation of Early Endosomal Entry by the Drosophila Tumor Suppressors Rabenosyn and Vps45

Holly A. Morrison; Heather Dionne; Tor Erik Rusten; Andreas Brech; William W. Fisher; Barret D. Pfeiffer; Susan E. Celniker; Harald Stenmark; David Bilder

The small GTPase Rab5 has emerged as an important regulator of animal development, and it is essential for endocytic trafficking. However, the mechanisms that link Rab5 activation to cargo entry into early endosomes remain unclear. We show here that Drosophila Rabenosyn (Rbsn) is a Rab5 effector that bridges an interaction between Rab5 and the Sec1/Munc18-family protein Vps45, and we further identify the syntaxin Avalanche (Avl) as a target for Vps45 activity. Rbsn and Vps45, like Avl and Rab5, are specifically localized to early endosomes and are required for endocytosis. Ultrastructural analysis of rbsn, Vps45, avl, and Rab5 null mutant cells, which show identical defects, demonstrates that all four proteins are required for vesicle fusion to form early endosomes. These defects lead to loss of epithelial polarity in mutant tissues, which overproliferate to form neoplastic tumors. This work represents the first characterization of a Rab5 effector as a tumor suppressor, and it provides in vivo evidence for a Rbsn-Vps45 complex on early endosomes that links Rab5 to the SNARE fusion machinery.


Molecular Biology of the Cell | 2009

The signaling mucins Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase pathway and contribute to a multimodal response.

Andrew Pitoniak; Barbara Birkaya; Heather Dionne; Nadia Vadaie; Paul J. Cullen

A central question in the area of signal transduction is why pathways utilize common components. In the budding yeast Saccharomyces cerevisiae, the HOG and filamentous growth (FG) MAPK pathways require overlapping components but are thought to be induced by different stimuli and specify distinct outputs. To better understand the regulation of the FG pathway, we examined FG in one of yeasts native environments, the grape-producing plant Vitis vinifera. In this setting, different aspects of FG were induced in a temporal manner coupled to the nutrient cycle, which uncovered a multimodal feature of FG pathway signaling. FG pathway activity was modulated by the HOG pathway, which led to the finding that the signaling mucins Msb2p and Hkr1p, which operate at the head of the HOG pathway, differentially regulate the FG pathway. The two mucins exhibited different expression and secretion patterns, and their overproduction induced nonoverlapping sets of target genes. Moreover, Msb2p had a function in cell polarization through the adaptor protein Sho1p that Hkr1p did not. Differential MAPK activation by signaling mucins brings to light a new point of discrimination between MAPK pathways.


Neuron | 2007

C. elegans G Protein Regulator RGS-3 Controls Sensitivity to Sensory Stimuli

Denise M. Ferkey; Rhonda Hyde; Gal Haspel; Heather Dionne; Heather A. Hess; Hiroshi Suzuki; William R. Schafer; Michael R. Koelle; Anne C. Hart

Signal transduction through heterotrimeric G proteins is critical for sensory response across species. Regulator of G protein signaling (RGS) proteins are negative regulators of signal transduction. Herein we describe a role for C. elegans RGS-3 in the regulation of sensory behaviors. rgs-3 mutant animals fail to respond to intense sensory stimuli but respond normally to low concentrations of specific odorants. We find that loss of RGS-3 leads to aberrantly increased G protein-coupled calcium signaling but decreased synaptic output, ultimately leading to behavioral defects. Thus, rgs-3 responses are restored by decreasing G protein-coupled signal transduction, either genetically or by exogenous dopamine, by expressing a calcium-binding protein to buffer calcium levels in sensory neurons or by enhancing glutamatergic synaptic transmission from sensory neurons. Therefore, while RGS proteins generally act to downregulate signaling, loss of a specific RGS protein in sensory neurons can lead to defective responses to external stimuli.


PLOS Genetics | 2010

Multiple signals converge on a differentiation MAPK pathway.

Colin A. Chavel; Heather Dionne; Barbara Birkaya; Jyoti Joshi; Paul J. Cullen

An important emerging question in the area of signal transduction is how information from different pathways becomes integrated into a highly coordinated response. In budding yeast, multiple pathways regulate filamentous growth, a complex differentiation response that occurs under specific environmental conditions. To identify new aspects of filamentous growth regulation, we used a novel screening approach (called secretion profiling) that measures release of the extracellular domain of Msb2p, the signaling mucin which functions at the head of the filamentous growth (FG) MAPK pathway. Secretion profiling of complementary genomic collections showed that many of the pathways that regulate filamentous growth (RAS, RIM101, OPI1, and RTG) were also required for FG pathway activation. This regulation sensitized the FG pathway to multiple stimuli and synchronized it to the global signaling network. Several of the regulators were required for MSB2 expression, which identifies the MSB2 promoter as a target “hub” where multiple signals converge. Accessibility to the MSB2 promoter was further regulated by the histone deacetylase (HDAC) Rpd3p(L), which positively regulated FG pathway activity and filamentous growth. Our findings provide the first glimpse of a global regulatory hierarchy among the pathways that control filamentous growth. Systems-level integration of signaling circuitry is likely to coordinate other regulatory networks that control complex behaviors.


Genetics | 2018

Genetic Reagents for Making Split-GAL4 Lines in Drosophila

Heather Dionne; Karen L. Hibbard; Amanda Cavallaro; Jui-Chun Kao; Gerald M. Rubin

The ability to reproducibly target expression of transgenes to small, defined subsets of cells is a key experimental tool for understanding many biological processes. The Drosophila nervous system contains thousands of distinct cell types and it has generally not been possible to limit expression to one or a few cell types when using a single segment of genomic DNA as an enhancer to drive expression. Intersectional methods, in which expression of the transgene only occurs where two different enhancers overlap in their expression patterns, can be used to achieve the desired specificity. This report describes a set of over 2800 transgenic lines for use with the split-GAL4 intersectional method.

Collaboration


Dive into the Heather Dionne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald M. Rubin

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda Cavallaro

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

David Bilder

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge