Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heather Flanagan-Steet is active.

Publication


Featured researches published by Heather Flanagan-Steet.


Development | 2005

Neuromuscular synapses can form in vivo by incorporation of initially aneural postsynaptic specializations

Heather Flanagan-Steet; Michael A. Fox; Dirk Meyer; Joshua R. Sanes

Synapse formation requires the coordination of pre- and postsynaptic differentiation. An unresolved question is which steps in the process require interactions between pre- and postsynaptic cells, and which proceed cell-autonomously. One current model is that factors released from presynaptic axons organize postsynaptic differentiation directly beneath the nerve terminal. Here, we used neuromuscular junctions (NMJs) of the zebrafish primary motor system to test this model. Clusters of neurotransmitter (acetylcholine) receptors (AChRs) formed in the central region of the myotome, destined to be synapse-rich, before axons extended and even when axon extension was prevented. Time-lapse imaging revealed that pre-existing clusters on early-born slow (adaxial) muscle fibers were incorporated into NMJs as axons advanced. Axons were, however, required for the subsequent remodeling and selective stabilization of synaptic clusters that precisely appose post- to presynaptic elements. Thus, motor axons are dispensable for the initial stages of postsynaptic differentiation but are required for later stages. Moreover, many AChR clusters on later-born fast muscle fibers formed at sites that had already been contacted by axons, suggesting heterogeneity in the signaling mechanisms leading to synapse formation by a single axon.


Journal of the American Chemical Society | 2012

Polar Dibenzocyclooctynes for Selective Labeling of Extracellular Glycoconjugates of Living Cells

Frédéric Friscourt; Petr A. Ledin; Ngalle Eric Mbua; Heather Flanagan-Steet; Margreet A. Wolfert; Richard Steet; Geert-Jan Boons

Although strain-promoted alkyne-azide cycloadditions (SPAAC) have found wide utility in biological and material sciences, the low polarity and limited water solubility of commonly used cyclooctynes represent a serious shortcoming. To address this problem, an efficient synthetic route has been developed for highly polar sulfated dibenzocyclooctynylamides (S-DIBO) by a Friedel-Crafts alkylation of 1,2-bis(3-methoxyphenyl)ethylamides with trichlorocyclopropenium cation followed by a controlled hydrolysis of the resulting dichlorocyclopropenes to give bis(3-methoxyphenyl)cyclooctacyclopropenones, which were subjected to methoxy group removal of the phenols, O-sulfation, and photochemical unmasking of the cyclopropenone moiety. Accurate rate measurements of the reaction of benzyl azide with various dibenzylcyclooctyne derivatives demonstrated that aromatic substitution and the presence of the amide function had only a marginal impact on the rate constants. Biotinylated S-DIBO 8 was successfully used for labeling azido-containing glycoconjugates of living cells. Furthermore, it was found that the substitution pattern of the dibenzylcyclooctynes influences subcellular location, and in particular it has been shown that DIBO derivative 4 can enter cells, thereby labeling intra- and extracellular azido-modified glycoconjugates, whereas S-DIBO 8 cannot pass the cell membrane and therefore is ideally suited for selective labeling of cell surface molecules. The ability to selectively label cell surface molecules will yield unique opportunities for glycomic analysis and the study of glycoprotein trafficking.


Molecular Biology of the Cell | 2012

A zebrafish model of PMM2-CDG reveals altered neurogenesis and a substrate-accumulation mechanism for N-linked glycosylation deficiency

Abigail Cline; Ningguo Gao; Heather Flanagan-Steet; Vandana Sharma; Sabrina Rosa; Roberto Sonon; Parastoo Azadi; Kirsten C. Sadler; Hudson H. Freeze; Mark A. Lehrman; Richard Steet

PMM2-CDG patients have phosphomannomutase (Pmm2) deficiency, with developmental and N-linked glycosylation defects attributed to depletion of mannose-1-phosphate and downstream lipid-linked oligosaccharides (LLOs). This, the first PMM2-CDG zebrafish model, shows, unexpectedly, that accumulation of the Pmm2 substrate mannose-6-phosphate explains LLO deficiency.


Angewandte Chemie | 2013

Selective Exo‐Enzymatic Labeling of N‐Glycans on the Surface of Living Cells by Recombinant ST6Gal I

Ngalle Eric Mbua; Xiuru Li; Heather Flanagan-Steet; Lu Meng; Kazuhiro Aoki; Kelley W. Moremen; Margreet A. Wolfert; Richard Steet; Geert-Jan Boons

A game of tag: N-Glycans on the surface of living cells were selectively tagged by exogenously administering recombinant ST6Gal I sialyltransferase and azide-modified CMP-Neu5Ac. This modification was followed by a strain-promoted cycloaddition using a biotin-modified dibenzylcyclooctynol (red star=biotin). The methodology will make it possible to dissect the mechanisms that underlie altered glycoconjugate recycling and storage in disease.


American Journal of Pathology | 2009

Altered chondrocyte differentiation and extracellular matrix homeostasis in a zebrafish model for mucolipidosis II.

Heather Flanagan-Steet; Christina Sias; Richard Steet

Mucolipidosis II (ML-II) is a pediatric disorder caused by defects in the biosynthesis of mannose 6-phosphate, the carbohydrate recognition signal responsible for targeting certain acid hydrolases to lysosomes. The mechanisms underlying the developmental defects of ML-II are largely unknown due in part to the lack of suitable animal models. To overcome these limitations, we developed a model for ML-II in zebrafish by inhibiting the expression of N-acetylglucosamine-1-phosphotransferase, the enzyme that initiates mannose 6-phosphate biosynthesis. Morphant embryos manifest craniofacial defects, impaired motility, and abnormal otolith and pectoral fin development. Decreased mannose phosphorylation of several lysosomal glycosidases was observed in morphant lysates, consistent with the reduction in phosphotransferase activity. Investigation of the craniofacial defects in the morphants uncovered striking changes in the timing and localization of both type II collagen and Sox9 expression, suggestive of an accelerated chondrocyte differentiation program. Accumulation of type II collagen was also noted within misshapen cartilage elements at later stages of development. Furthermore, we observed abnormal matrix formation and calcium deposition in morphant otoliths. Collectively, these data provide new insight into the developmental pathology of ML-II and suggest that altered production and/or homeostasis of extracellular matrix proteins are integral to the disease process. These findings highlight the potential of the zebrafish system in studying lysosomal disease pathogenesis.


Development | 2011

Sugar-free frosting, a homolog of SAD kinase, drives neural-specific glycan expression in the Drosophila embryo.

Sarah Baas; Mary Sharrow; Varshika Kotu; Meg Middleton; Khoi Nguyen; Heather Flanagan-Steet; Kazuhiro Aoki; Michael Tiemeyer

Precise glycan structures on specific glycoproteins impart functionalities essential for neural development. However, mechanisms controlling embryonic neural-specific glycosylation are unknown. A genetic screen for relevant mutations in Drosophila generated the sugar-free frosting (sff) mutant that reveals a new function for protein kinases in regulating substrate flux through specific Golgi processing pathways. Sff is the Drosophila homolog of SAD kinase, which regulates synaptic vesicle tethering and neuronal polarity in nematodes and vertebrates. Our Drosophila sff mutant phenotype has features in common with SAD kinase mutant phenotypes in these other organisms, but we detect altered neural glycosylation well before the initiation of embryonic synaptogenesis. Characterization of Golgi compartmentation markers indicates altered colocalization that is consistent with the detected shift in glycan complexity in sff mutant embryos. Therefore, in analogy to synaptic vesicle tethering, we propose that Sff regulates vesicle tethering at Golgi membranes in the developing Drosophila embryo. Furthermore, neuronal sff expression is dependent on transcellular signaling through a non-neural toll-like receptor, linking neural-specific glycan expression to a kinase activity that is induced in response to environmental cues.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Abnormal accumulation and recycling of glycoproteins visualized in Niemann–Pick type C cells using the chemical reporter strategy

Ngalle Eric Mbua; Heather Flanagan-Steet; Steven G. Johnson; Margreet A. Wolfert; Geert-Jan Boons; Richard Steet

Niemann–Pick type C (NPC) disease is characterized by impaired cholesterol efflux from late endosomes and lysosomes and secondary accumulation of lipids. Although impaired trafficking of individual glycoproteins and glycolipids has been noted in NPC cells and other storage disorders, there is currently no effective way to monitor their localization and movement en masse. Using a chemical reporter strategy in combination with pharmacologic treatments, we demonstrate a disease-specific and previously unrecognized accumulation of a diverse set of glycoconjugates in NPC1-null and NPC2-deficient fibroblasts within endocytic compartments. These labeled vesicles do not colocalize with the cholesterol-laden compartments of NPC cells. Experiments using the endocytic uptake marker dextran show that the endosomal accumulation of sialylated molecules can be largely attributed to impaired recycling as opposed to altered fusion of vesicles. Treatment of either NPC1-null or NPC2-deficient cells with cyclodextrin was effective in reducing cholesterol storage as well as the endocytic accumulation of sialoglycoproteins, demonstrating a direct link between cholesterol storage and abnormal recycling. Our data further demonstrate that this accumulation is largely glycoproteins, given that inhibitors of O-glycan initiation or N-glycan processing led to a significant reduction in staining intensity. Taken together, our results provide a unique perspective on the trafficking defects in NPC cells, and highlight the utility of this methodology in analyzing cells with altered recycling and turnover of glycoproteins.


Journal of Biological Chemistry | 2015

Analysis of Mucolipidosis II/III GNPTAB Missense Mutations Identifies Domains of UDP-GlcNAc:lysosomal Enzyme GlcNAc-1-phosphotransferase Involved in Catalytic Function and Lysosomal Enzyme Recognition

Yi Qian; Eline van Meel; Heather Flanagan-Steet; Alex Yox; Richard Steet; Stuart Kornfeld

Background: Mutations in GNPTAB cause the lysosomal disorders mucolipidosis II and III αβ. Results: All reported missense mutations were studied and showed various consequences on its gene product, αβ GlcNAc-1-phosphotransferase. Conclusion: Domains responsible for catalytic activity and lysosomal hydrolase recognition were identified. Significance: Analysis of patient mutations provided new insight into the functional domains of αβ GlcNAc-1-phosphotransferase. UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase tags newly synthesized lysosomal enzymes with mannose 6-phosphate recognition markers, which are required for their targeting to the endolysosomal system. GNPTAB encodes the α and β subunits of GlcNAc-1-phosphotransferase, and mutations in this gene cause the lysosomal storage disorders mucolipidosis II and III αβ. Prior investigation of missense mutations in GNPTAB uncovered amino acids in the N-terminal region and within the DMAP domain involved in Golgi retention of GlcNAc-1-phosphotransferase and its ability to specifically recognize lysosomal hydrolases, respectively. Here, we undertook a comprehensive analysis of the remaining missense mutations in GNPTAB reported in mucolipidosis II and III αβ patients using cell- and zebrafish-based approaches. We show that the Stealth domain harbors the catalytic site, as some mutations in these regions greatly impaired the activity of the enzyme without affecting its Golgi localization and proteolytic processing. We also demonstrate a role for the Notch repeat 1 in lysosomal hydrolase recognition, as missense mutations in conserved cysteine residues in this domain do not affect the catalytic activity but impair mannose phosphorylation of certain lysosomal hydrolases. Rescue experiments using mRNA bearing Notch repeat 1 mutations in GNPTAB-deficient zebrafish revealed selective effects on hydrolase recognition that differ from the DMAP mutation. Finally, the mutant R587P, located in the spacer between Notch 2 and DMAP, was partially rescued by overexpression of the γ subunit, suggesting a role for this region in γ subunit binding. These studies provide new insight into the functions of the different domains of the α and β subunits.


Proceedings of the National Academy of Sciences of the United States of America | 2013

The DMAP interaction domain of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is a substrate recognition module

Yi Qian; Heather Flanagan-Steet; Eline van Meel; Richard Steet; Stuart Kornfeld

UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase) is an α2β2γ2 heterohexamer that mediates the initial step in the formation of the mannose 6-phosphate recognition signal on lysosomal acid hydrolases. We previously reported that the specificity of the reaction is determined by the ability of the α/β subunits to recognize a conformation-dependent protein determinant present on the acid hydrolases. We now present evidence that the DNA methyltransferase-associated protein (DMAP) interaction domain of the α subunit functions in this recognition process. First, GST-DMAP pulled down several acid hydrolases, but not nonlysosomal glycoproteins. Second, recombinant GlcNAc-1-phosphotransferase containing a missense mutation in the DMAP interaction domain (Lys732Asn) identified in a patient with mucolipidosis II exhibited full activity toward the simple sugar α-methyl d-mannoside but impaired phosphorylation of acid hydrolases. Finally, unlike the WT enzyme, expression of the K732N mutant in a zebrafish model of mucolipidosis II failed to correct the phenotypic abnormalities. These results indicate that the DMAP interaction domain of the α subunit functions in the selective recognition of acid hydrolase substrates and provides an explanation for the impaired phosphorylation of acid hydrolases in a patient with mucolipidosis II.


Disease Models & Mechanisms | 2012

Excessive activity of cathepsin K is associated with cartilage defects in a zebrafish model of mucolipidosis II.

Aaron C. Petrey; Heather Flanagan-Steet; Steven Johnson; Xiang Fan; Mitche dela Rosa; Mark E. Haskins; Alison V. Nairn; Kelley W. Moremen; Richard Steet

SUMMARY The severe pediatric disorder mucolipidosis II (ML-II; also known as I-cell disease) is caused by defects in mannose 6-phosphate (Man-6-P) biosynthesis. Patients with ML-II exhibit multiple developmental defects, including skeletal, craniofacial and joint abnormalities. To date, the molecular mechanisms that underlie these clinical manifestations are poorly understood. Taking advantage of a zebrafish model of ML-II, we previously showed that the cartilage morphogenesis defects in this model are associated with altered chondrocyte differentiation and excessive deposition of type II collagen, indicating that aspects of development that rely on proper extracellular matrix homeostasis are sensitive to decreases in Man-6-P biosynthesis. To further investigate the molecular bases for the cartilage phenotypes, we analyzed the transcript abundance of several genes in chondrocyte-enriched cell populations isolated from wild-type and ML-II zebrafish embryos. Increased levels of cathepsin and matrix metalloproteinase (MMP) transcripts were noted in ML-II cell populations. This increase in transcript abundance corresponded with elevated and sustained activity of several cathepsins (K, L and S) and MMP-13 during early development. Unlike MMP-13, for which higher levels of protein were detected, the sustained activity of cathepsin K at later stages seemed to result from its abnormal processing and activation. Inhibition of cathepsin K activity by pharmacological or genetic means not only reduced the activity of this enzyme but led to a broad reduction in additional protease activity, significant correction of the cartilage morphogenesis phenotype and reduced type II collagen staining in ML-II embryos. Our findings suggest a central role for excessive cathepsin K activity in the developmental aspects of ML-II cartilage pathogenesis and highlight the utility of the zebrafish system to address the biochemical underpinnings of metabolic disease.

Collaboration


Dive into the Heather Flanagan-Steet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark E. Haskins

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiang Fan

University of Georgia

View shared research outputs
Researchain Logo
Decentralizing Knowledge