Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heather Freer is active.

Publication


Featured researches published by Heather Freer.


Veterinary Immunology and Immunopathology | 2009

Development of a bead-based multiplex assay for simultaneous quantification of cytokines in horses.

Bettina Wagner; Heather Freer

The detection and quantification of equine cytokines has been hampered by the lack of antibodies for many years. With the development of antibody pairs for equine cytokines during the past years, the quantification of these essential regulators of the immune response became possible. After being successfully tested by enzyme-linked immunosorbent assays (ELISA), three of these anti-cytokine reagents were used here to establish the first cytokine multiplex assay for equine IL-4, IL-10 and IFN-alpha. A fluorescent bead-based system was used as matrix for this assay that allows the simultaneous detection of the cytokines in a single sample by a Luminex analyzer. Equine recombinant cytokine/IgG fusion proteins were validated as standards for quantification of the individual cytokines. The analytical sensitivities of the multiplex assay were found to be 40 pg/ml for IL-4 and 15 pg/ml for IL-10 and IFN-alpha. The sensitivity of cytokine detection by the multiplex assay was increased by 13- to 150-fold compared to the corresponding ELISA. The specificity of the multiplex assay was validated using cell culture supernatants from equine peripheral blood mononuclear cells (PBMC) stimulated with different mitogens or infected with equine herpesvirus type 1 (EHV-1). As predicted, supernatants from PBMC stimulated with different mitogens contained IL-4 and IL-10, but no IFN-alpha. EHV-1 infection of PBMC resulted in a dose-dependent secretion of IFN-alpha. Low concentrations of IL-10 were also measured. IL-4 was not detectable in these samples. The resulting detection pattern found for the multiplex analysis and assays performed with individual standard cytokines indicated that individual bead assays did not interfere or cross-react during simultaneous detection of equine IL-4, IL-10 and IFN-alpha. The equine cytokine multiplex assay is a valuable and cost-effective tool for quantification of IL-4, IL-10 and IFN-alpha and can be used for manifold immunological applications. In the future, the assay can also be expanded by adding bead assays for other equine cytokines and chemokines to the existing platform.


Clinical and Vaccine Immunology | 2012

Antibodies to Borrelia burgdorferi OspA, OspC, OspF, and C6 antigens as markers for early and late infection in dogs.

Bettina Wagner; Heather Freer; Alicia Rollins; David Garcia-Tapia; Hollis N. Erb; Christopher G. Earnhart; Richard T. Marconi; Patrick Meeus

ABSTRACT Lyme disease in the United States is caused by Borrelia burgdorferi sensu stricto, which is transmitted to mammals by infected ticks. Borrelia spirochetes differentially express immunogenic outer surface proteins (Osp). Our aim was to evaluate antibody responses to Osp antigens to aid the diagnosis of early infection and the management of Lyme disease. We analyzed antibody responses during the first 3 months after the experimental infection of dogs using a novel multiplex assay. Results were compared to those obtained with two commercial assays detecting C6 antigen. Multiplex analysis identified antibodies to OspC and C6 as early as 3 weeks postinfection (p.i.) and those to OspF by 5 weeks p.i. Antibodies to C6 and OspF increased throughout the study, while antibodies to OspC peaked between 7 and 11 weeks p.i. and declined thereafter. A short-term antibody response to OspA was observed in 3/8 experimentally infected dogs on day 21 p.i. Quant C6 enzyme-linked immunosorbent assay (ELISA) results matched multiplex results during the first 7 weeks p.i.; however, antibody levels subsequently declined by up to 29%. Immune responses then were analyzed in sera from 125 client-owned dogs and revealed high agreement between antibodies to OspF and C6 as robust markers for infection. Results from canine patient sera supported that OspC is an early infection marker and antibodies to OspC decline over time. The onset and decline of antibody responses to B. burgdorferi Osp antigens and C6 reflect their differential expression during infection. They provide valuable tools to determine the stage of infection, treatment outcomes, and vaccination status in dogs.


Veterinary Immunology and Immunopathology | 2011

Infection of peripheral blood mononuclear cells with neuropathogenic equine herpesvirus type-1 strain Ab4 reveals intact interferon-α induction and induces suppression of anti-inflammatory interleukin-10 responses in comparison to other viral strains.

Bettina Wagner; Christine Wimer; Heather Freer; Nikolaus Osterrieder; Hollis N. Erb

The recent increase in incidence, morbidity, and mortality of neurological disease induced by equine herpesvirus type 1 (EHV-1) has suggested a change of virulence of the virus. The exact mechanisms by which EHV-1 induces neurologic disease are not known. Environmental, viral, and host risk factors might contribute to neurological manifestation. Here, we investigated innate interferon-α (IFN-α), interleukin-10 (IL-10) and IL-4 responses after infection of equine peripheral blood mononuclear cells (PBMC) with EHV-1 using an available cytokine multiplex assay. Three viral strains representing an older isolate (RacL11), a recent abortigenic (NY03) and a neuropathogenic isolate (Ab4) were compared to identify differences in cytokine induction that might explain the increased pathogenicity of Ab4. Cytokine concentrations were also compared between foals, mares after birth, pregnant and non-pregnant mares to investigate whether immune responses to EHV-1 infection are influenced by age or pregnancy status. PBMC from all groups secreted high concentrations of anti-viral IFN-α in response to EHV-1. A reduced response was observed in foals compared to non-pregnant mares. EHV-1 infection induced moderate IL-10 and overall low IL-4 secretion. Ab4 infection resulted in a significant reduction of IL-10 responses in adult horses. IL-10 and IL-4 responses were lower in foals than in most mare groups. These data suggested that EHV-1 induces robust IFN-α secretion without major differences between viral strains. However, anti-inflammatory IL-10 production was significantly reduced after infection with neuropathogenic Ab4. The ability of this EHV-1 isolate to down-regulate IL-10 production might contribute to increased local inflammation and a higher risk for neurological manifestation of the disease after infection with Ab4.


Veterinary Immunology and Immunopathology | 2013

Production of seven monoclonal equine immunoglobulins isotyped by multiplex analysis.

Alison Keggan; Heather Freer; Alicia Rollins; Bettina Wagner

Horses have 11 immunoglobulin isotypes: IgM, IgD, IgA, IgE, and seven IgG subclasses designated as IgG1-IgG7, each of which are distinguished by separate genes encoding the constant heavy chain regions. Immunoglobulin (Ig) isotypes have different functions during the immune response and pathogen-specific isotypes can be used as indicators for immunity and protection from disease. In addition to existing monoclonal antibodies to various equine Igs, quantification of the individual isotypes requires pure isotype standards. In this report, we describe a fusion between X63-Ag8.653 mouse myeloma cells and horse PBMC to create equine-murine heterohybridomas. Initial screening for Ig production was performed by ELISA. Further testing was performed by a new 5-plex fluorescent bead-based assay able to simultaneously detect equine IgM, IgG1, IgG4/7, IgG5, and IgG6. Production of IgG3 and IgE was tested by separate bead assays. Seven stable heterohybridoma clones producing monoclonal equine IgM, IgG1, IgG3, IgG4/7, IgG5, IgG6 and IgE were created. Purified Ig isotypes were then tested by SDS-PAGE. The pure, monoclonal equine Ig isotypes and the new equine Ig multiplex testing developed here are valuable tools to quantify antibody responses and to accurately determine individual isotypes concentrations in horses.


Equine Veterinary Journal | 2013

Antibodies to OspC, OspF and C6 antigens as indicators for infection with Borrelia burgdorferi in horses

Bettina Wagner; Laura B. Goodman; Alicia Rollins; Heather Freer

REASONS FOR PERFORMING STUDY Lyme disease is caused by Borrelia burgdorferi, which is transmitted by infected ticks (Ixodes spp.). Reports on Lyme disease in horses have increased in recent years. Nevertheless, the diagnosis of Lyme disease in horses is still challenging owing to its vague clinical presentation and the limitations of diagnostic tests. OBJECTIVES This study used a new serological Lyme multiplex assay to examine antibody responses to 3 antigens of B. burgdorferi, outer surface protein (Osp) C, OspF and C6, and to verify their use as markers for early and late infection stages in horses. METHODS Multiplex analysis of antibodies to OspC, OspF and C6 in equine patient sera (n = 191) was performed. A subset of the sera (n = 90) was also tested using a commercial C6-based Lyme test. RESULTS Antibodies to OspF and C6 highly correlate as reliable markers of infection with B. burgdorferi in horses. Antibodies to OspC, which have been confirmed as early infection markers in man and dogs, were only detected in some patient sera, suggesting that OspC antibodies are indicators of early infection in horses. Commercial C6 testing identified most infected horses but also resulted in false positive and false negative interpretations. CONCLUSIONS Serological multiplex testing is a rapid and quantitative diagnostic method to confirm infection with B. burgdorferi and to identify the stage of infection. In horses with risk of exposure and clinical signs, multiplex testing supports the diagnosis of Lyme disease. POTENTIAL RELEVANCE Antimicrobial treatment of B. burgdorferi is time sensitive. Treatment success decreases with time of persistent infection, while the risk of developing chronic disease increases. The ability to identify early infection with B. burgdorferi provides practitioners and clinicians with a tool to improve the diagnosis of equine Lyme disease and make treatment decisions.


Vaccine | 2015

Antibody and cellular immune responses of naïve mares to repeated vaccination with an inactivated equine herpesvirus vaccine.

Bettina Wagner; Laura B. Goodman; Susanna Babasyan; Heather Freer; Sigurbjörg Torsteinsdóttir; Vilhjálmur Svansson; Sigríður Björnsdóttir; Gillian A. Perkins

Equine herpesvirus type 1 (EHV-1) continues to cause severe outbreaks of abortions or myeloencephalopathy in horses despite widely used vaccination. The aim of this work was to determine the effects of frequent vaccination with an inactivated EHV vaccine on immune development in horses. Fifteen EHV-1 naïve mares were vaccinated a total of 5 times over a period of 8 months with intervals of 20, 60, 90 and 60 days between vaccine administrations. Total antibody and antibody isotype responses were evaluated with a new sensitive EHV-1 Multiplex assay to glycoprotein C (gC) and gD for up to 14 months after initial vaccination. Antibodies peaked after the first two vaccine doses and then declined despite a third administration of the vaccine. The fourth vaccine dose was given at 6 months and the gC and gD antibody titers increased again. Mixed responses with increasing gC but decreasing gD antibody values were observed after the fifth vaccination at 8 months. IgG4/7 isotype responses mimicked the total Ig antibody production to vaccination most closely. Vaccination also induced short-lasting IgG1 antibodies to gC, but not to gD. EHV-1-specific cellular immunity induced by vaccination developed slower than antibodies, was dominated by IFN-γ producing T-helper 1 (Th1) cells, and was significantly increased compared to pre-vaccination values after administration of 3 vaccine doses. Decreased IFN-γ production and reduced Th1-cell induction were also observed after the second and fourth vaccination. Overall, repeated EHV vaccine administration did not always result in increasing immunity. The adverse effects on antibody and cellular immunity that were observed here when the EHV vaccine was given in short intervals might in part explain why EHV-1 outbreaks are observed worldwide despite widely used vaccination. The findings warrant further evaluation of immune responses to EHV vaccines to optimize vaccination protocols for different vaccines and horse groups at risk.


Veterinary Immunology and Immunopathology | 2014

Maternal T-lymphocytes in equine colostrum express a primarily inflammatory phenotype.

Gillian A. Perkins; Laura B. Goodman; Christine Wimer; Heather Freer; Susanna Babasyan; Bettina Wagner

The purpose of this study was to characterize maternal immune cells in colostrum of mares. Cell phenotypes and cytokine secretion from mare peripheral blood mononuclear cells (PBMC) and cells from colostrum were analyzed by flow cytometry and by multiplex cytokine analysis. Equine colostral leukocytes were composed of mainly CD8(+) and CD4(+) lymphocytes. CD8(+) cells were significantly enriched in colostrum compared to PBMC (n=35). Colostral T-cells (n=13) responded to stimulation with PMA/ionomycin with a significantly higher magnitude of IL-17 (p=0.037) and similar IFN-γ concentrations (p=0.305), while IL-4 (p=0.0002) and IL-10 (p=0.0002) production was decreased compared to PBMC. CD4(+) and CD8(+) T-cells in colostrum produced IFN-γ (n=4). The findings show that colostrum T-cells can produce all four cytokines investigated here but most cells are polarized toward IL-17 and IFN-γ production and an inflammatory phenotype. Maternal T-cells likely migrate to the colostrum in a selective manner and may have specific roles in neonatal immune development.


Veterinary Immunology and Immunopathology | 2013

Analysis of soluble CD14 and its use as a biomarker in neonatal foals with septicemia and horses with recurrent airway obstruction.

Bettina Wagner; Dorothy M. Ainsworth; Heather Freer

Soluble CD14 (sCD14) binds bacterial lipopolysaccharide (LPS) and acts as an anti-inflammatory LPS-inhibitor in vivo. In humans, sCD14 is one of the soluble biomarkers used for various inflammatory diseases and conditions, however, sCD14 assays have not yet been evaluated in horses. Here, we developed and optimized a bead-based assay for the quantification of sCD14 in horses. The assay was then used to determine native sCD14 concentrations in serum from healthy and septic foals, in the colostrum of healthy mares and in plasma from adult horses with recurrent airway obstruction (RAO) and control horses. Healthy foals and adult horses had sCD14 concentrations in serum or plasma in the high ng/ml range. The concentration of sCD14 in colostrum samples from healthy mares was in the μg/ml range. Foals with septicemia and adult horses with RAO had significantly higher sCD14 concentrations in their circulation than the respective control groups. The findings suggest that sCD14 can become a valuable biomarker for neonatal septicemia, RAO and possibly also for other inflammatory diseases in horses. Further studies and larger samples numbers are required to determine normal sCD14 concentration ranges and those that are indicative of disease progression, severity or prognosis.


PLOS ONE | 2017

Neonatal Immunization with a Single IL-4/Antigen Dose Induces Increased Antibody Responses after Challenge Infection with Equine Herpesvirus Type 1 (EHV-1) at Weanling Age

Bettina Wagner; Gillian A. Perkins; Susanna Babasyan; Heather Freer; Alison Keggan; Laura B. Goodman; Amy L. Glaser; Sigurbjörg Torsteinsdóttir; Vilhjálmur Svansson; Sigríður Björnsdóttir

Neonatal foals respond poorly to conventional vaccines. These vaccines typically target T-helper (Th) cell dependent B-cell activation. However, Th2-cell immunity is impaired in foals during the first three months of life. In contrast, neonatal basophils are potent interleukin-4 (IL-4) producers. The purpose of this study was to develop a novel vaccine triggering the natural capacity of neonatal basophils to secrete IL-4 and to evaluate if vaccination resulted in B-cell activation and antibody production against EHV-1 glycoprotein C (gC). Neonatal vaccination was performed by oral biotinylated IgE (IgE-bio) treatment at birth followed by intramuscular injection of a single dose of streptavidin-conjugated gC/IL-4 fusion protein (Sav-gC/IL-4) for crosslinking of receptor-bound IgE-bio (group 1). Neonates in group 2 received the intramuscular Sav-gC/IL-4 vaccine only. Group 3 remained non-vaccinated at birth. After vaccination, gC antibody production was not detectable. The ability of the vaccine to induce protection was evaluated by an EHV-1 challenge infection after weaning at 7 months of age. Groups 1 and 2 responded to EHV-1 infection with an earlier onset and overall significantly increased anti-gC serum antibody responses compared to control group 3. In addition, group 1 weanlings had a decreased initial fever peak after infection indicating partial protection from EHV-1 infection. This suggested that the neonatal vaccination induced a memory B-cell response at birth that was recalled at weanling age after EHV-1 challenge. In conclusion, early stimulation of neonatal immunity via the innate arm of the immune system can induce partial protection and increased antibody responses against EHV-1.


Veterinary Immunology and Immunopathology | 2013

Detection of Borrelia burgdorferi outer surface protein antibodies in wild white-tailed deer (Odocoileus virginianus) in New York and Pennsylvania, USA

Megan S. Kirchgessner; Heather Freer; Christopher M. Whipps; Bettina Wagner

Borrelia burgdorferi differentially exhibits outer surface proteins (Osp) on its outer membrane, and detection of particular Osp antibodies in mammals is suggestive of the infection stage. For example, OspF is typically associated with chronic infection, whereas OspC suggests early infection. A fluorescent bead-based multiplex assay was used to test sera from New York and Pennsylvania white-tailed deer (Odocoileus virginianus) for the presence of antibodies to OspA, OspC, and OspF. OspF seroprevalence was significantly greater than both OspA and OspC seroprevalence for all study sites. OspA, OspC, and OspF seroprevalences were significantly greater in Pennsylvania deer than New York deer. The regional differences in seroprevalence are believed to be attributable to a heterogeneous Ixodes scapularis distribution. While most seropositive deer were solely OspF seropositive, deer concurrently OspC and OspF seropositive were the second most commonly encountered individuals. Simultaneous detection of OspF and OspC antibodies may occur when non-infected or chronically infected deer are bitten by an infected tick within a few months of blood collection, thereby inducing production of antibodies associated with the early stages of infection with B. burgdorferi.

Collaboration


Dive into the Heather Freer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge