Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heather Hampel is active.

Publication


Featured researches published by Heather Hampel.


Journal of Clinical Oncology | 2008

Feasibility of Screening for Lynch Syndrome Among Patients With Colorectal Cancer

Heather Hampel; Wendy L. Frankel; Edward W. Martin; Mark W. Arnold; Karamjit S. Khanduja; Philip Kuebler; Mark Clendenning; Kaisa Sotamaa; Thomas W. Prior; Judith A. Westman; Jenny Panescu; Dan Fix; Janet Lockman; Jennifer LaJeunesse; Ilene Comeras; Albert de la Chapelle

PURPOSE Identifying individuals with Lynch syndrome (LS) is highly beneficial. However, it is unclear whether microsatellite instability (MSI) or immunohistochemistry (IHC) should be used as the screening test and whether screening should target all patients with colorectal cancer (CRC) or those in high-risk subgroups. PATIENTS AND METHODS MSI testing and IHC for the four mismatch repair proteins was performed on 500 tumors from unselected patients with CRC. If either MSI or IHC was abnormal, complete mutation analysis for the mismatch repair genes was performed. RESULTS Among the 500 patients, 18 patients (3.6%) had LS. All 18 patients detected with LS (100%) had MSI-high tumors; 17 (94%) of 18 patients with LS were correctly predicted by IHC. Of the 18 probands, only eight patients (44%) were diagnosed at age younger than 50 years, and only 13 patients (72%) met the revised Bethesda guidelines. When these results were added to data on 1,066 previously studied patients, the entire study cohort (N = 1,566) showed an overall prevalence of 44 of 1,566 patients (2.8%; 95% CI, 2.1% to 3.8%) for LS. For each proband, on average, three additional family members carried MMR mutations. CONCLUSION One of every 35 patients with CRC has LS, and each has at least three relatives with LS; all of whom can benefit from increased cancer surveillance. For screening, IHC is almost equally sensitive as MSI, but IHC is more readily available and helps to direct gene testing. Limiting tumor analysis to patients who fulfill Bethesda criteria would fail to identify 28% (or one in four) cases of LS.


Journal of Clinical Oncology | 1998

Sequence analysis of BRCA1 and BRCA2: correlation of mutations with family history and ovarian cancer risk.

Thomas S. Frank; Susan Manley; Olufunmilayo I. Olopade; Shelly Cummings; Judy Garber; Barbara Bernhardt; Karen H. Antman; Donna Russo; Marie Wood; Lisa Mullineau; Claudine Isaacs; Beth N. Peshkin; Saundra S. Buys; Vicki Venne; Peter T. Rowley; Starlene Loader; Kenneth Offit; Mark E. Robson; Heather Hampel; Dara Brener; Shelly Clark; Barbara L. Weber; Louise C. Strong; Paula T. Rieger; Melody McClure; Brian E. Ward; Donna M. Shattuck-Eidens; Arnold Oliphant; Mark H. Skolnick; Alun Thomas

PURPOSE Previous studies of mutations in BRCA1 or BRCA2 have used detection methods that may underestimate the actual frequency of mutations and have analyzed women using heterogeneous criteria for risk of hereditary cancer. PATIENTS AND METHODS A total of 238 women with breast cancer before age 50 or ovarian cancer at any age and at least one first- or second-degree relative with either diagnosis underwent sequence analysis of BRCA1 followed by analysis of BRCA2 (except for 27 women who declined analysis of BRCA2 after a deleterious mutation was discovered in BRCA1). Results were correlated with personal and family history of malignancy. RESULTS Deleterious mutations were identified in 94 (39%) women, including 59 of 117 (50%) from families with ovarian cancer and 35 of 121 (29%) from families without ovarian cancer. Mutations were identified in 14 of 70 (20%) women with just one other relative who developed breast cancer before age 50. In women with breast cancer, mutations in BRCA1 and BRCA2 were associated with a 10-fold increased risk of subsequent ovarian carcinoma (P = .005). CONCLUSION Because mutations in BRCA1 and BRCA2 in women with breast cancer are associated with an increased risk of ovarian cancer, analysis of these genes should be considered for women diagnosed with breast cancer who have a high probability of carrying a mutation according to the statistical model developed with these data.


Journal of Clinical Oncology | 2010

American Society of Clinical Oncology Policy Statement Update: Genetic and Genomic Testing for Cancer Susceptibility

Mark Robson; Angela R. Bradbury; Banu Arun; Susan M. Domchek; James M. Ford; Heather Hampel; Stephen M. Lipkin; Sapna Syngal; Dana S. Wollins; Noralane M. Lindor

The American Society of Clinical Oncology (ASCO) has long affirmed that the recognition and management of individuals with an inherited susceptibility to cancer are core elements of oncology care. ASCO released its first statement on genetic testing in 1996 and updated that statement in 2003 and 2010 in response to developments in the field. In 2014, the Cancer Prevention and Ethics Committees of ASCO commissioned another update to reflect the impact of advances in this area on oncology practice. In particular, there was an interest in addressing the opportunities and challenges arising from the application of massively parallel sequencing-also known as next-generation sequencing-to cancer susceptibility testing. This technology introduces a new level of complexity into the practice of cancer risk assessment and management, requiring renewed effort on the part of ASCO to ensure that those providing care to patients with cancer receive the necessary education to use this new technology in the most effective, beneficial manner. The purpose of this statement is to explore the challenges of new and emerging technologies in cancer genetics and provide recommendations to ensure their optimal deployment in oncology practice. Specifically, the statement makes recommendations in the following areas: germline implications of somatic mutation profiling, multigene panel testing for cancer susceptibility, quality assurance in genetic testing, education of oncology professionals, and access to cancer genetic services.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Gene expression in papillary thyroid carcinoma reveals highly consistent profiles

Ying Huang; Manju Prasad; William J. Lemon; Heather Hampel; Fred A. Wright; Karl Kornacker; Virginia A. LiVolsi; Wendy L. Frankel; Richard T. Kloos; Charis Eng; Natalia S. Pellegata; Albert de la Chapelle

Papillary thyroid carcinoma (PTC) is clinically heterogeneous. Apart from an association with ionizing radiation, the etiology and molecular biology of PTC is poorly understood. We used oligo-based DNA arrays to study the expression profiles of eight matched pairs of normal thyroid and PTC tissues. Additional PTC tumors and other tissues were studied by reverse transcriptase–PCR and immunohistochemistry. The PTCs showed concordant expression of many genes and distinct clustered profiles. Genes with increased expression in PTC included many encoding adhesion and extracellular matrix proteins. Expression was increased in 8/8 tumors for 24 genes and in 7/8 tumors for 22 genes. Among these genes were several previously known to be overexpressed in PTC, such as MET, LGALS3, KRT19, DPP4, MDK, TIMP1, and FN1. The numerous additional genes include CITED1, CHI3L1, ODZ1, N33, SFTPB, and SCEL. Reverse transcriptase–PCR showed high expression of CITED1, CHI3L1, ODZ1, and SCEL in 6/6 additional PTCs. Immunohistochemical analysis detected CITED1 and SFTPB in 49/52 and 39/52 PTCs, respectively, but not in follicular thyroid carcinoma and normal thyroid tissue. Genes underexpressed in PTC included tumor suppressors, thyroid function-related proteins, and fatty acid binding proteins. Expression was decreased in 7/8 tumors for eight genes and decreased in 6/8 tumors for 19 genes. We conclude that, despite its clinical heterogeneity, PTC is characterized by consistent and specific molecular changes. These findings reveal clues to the molecular pathways involved in PTC and may provide biomarkers for clinical use.


Cancer Research | 2006

Screening for Lynch Syndrome (Hereditary Nonpolyposis Colorectal Cancer) among Endometrial Cancer Patients

Heather Hampel; Wendy L. Frankel; Jenny Panescu; Janet Lockman; Kaisa Sotamaa; Daniel V. Fix; Ilene Comeras; Jennifer La Jeunesse; Hidewaki Nakagawa; Judith A. Westman; Thomas W. Prior; Mark Clendenning; Pamela Penzone; Janet Lombardi; Patti Dunn; David E. Cohn; Larry J. Copeland; Lynne A. Eaton; Jeffrey M. Fowler; George S. Lewandowski; Luis Vaccarello; Jeffrey Bell; Gary C. Reid; Albert de la Chapelle

Endometrial cancer is the most common cancer in women with Lynch syndrome. The identification of individuals with Lynch syndrome is desirable because they can benefit from increased cancer surveillance. The purpose of this study was to determine the feasibility and desirability of molecular screening for Lynch syndrome in all endometrial cancer patients. Unselected endometrial cancer patients (N = 543) were studied. All tumors underwent microsatellite instability (MSI) testing. Patients with MSI-positive tumors underwent testing for germ line mutations in MLH1, MSH2, MSH6, and PMS2. Of 543 tumors studied, 118 (21.7%) were MSI positive (98 of 118 MSI high and 20 of 118 MSI low). All 118 patients with MSI-positive tumors had mutation testing, and nine of them had deleterious germ line mutations (one MLH1, three MSH2, and five MSH6). In addition, one case with an MSI-negative tumor had abnormal MSH6 immunohistochemical staining and was subsequently found to have a mutation in MSH6. Immunohistochemical staining was consistent with the mutation result in all seven truncating mutation-positive cases but was not consistent in two of the three missense mutation cases. We conclude that in central Ohio, at least 1.8% (95% confidence interval, 0.9-3.5%) of newly diagnosed endometrial cancer patients had Lynch syndrome. Seven of the 10 Lynch syndrome patients did not meet any published criteria for hereditary nonpolyposis colorectal cancer, and six of them were diagnosed at age >50. Studying all endometrial cancer patients for Lynch syndrome using a combination of MSI and immunohistochemistry for molecular prescreening followed by gene sequencing and deletion analysis is feasible and may be desirable.


Gastroenterology | 2008

The Clinical Phenotype of Lynch Syndrome Due to Germ-Line PMS2 Mutations

Leigha Senter; Mark Clendenning; Kaisa Sotamaa; Heather Hampel; Jane Green; John D. Potter; Annika Lindblom; Kristina Lagerstedt; Stephen N. Thibodeau; Noralane M. Lindor; Joanne Young; Ingrid Winship; James G. Dowty; Darren M. White; John L. Hopper; Laura Baglietto; Mark A. Jenkins; Albert de la Chapelle

BACKGROUND & AIMS Although the clinical phenotype of Lynch syndrome (also known as hereditary nonpolyposis colorectal cancer) has been well described, little is known about disease in PMS2 mutation carriers. Now that mutation detection methods can discern mutations in PMS2 from mutations in its pseudogenes, more mutation carriers have been identified. Information about the clinical significance of PMS2 mutations is crucial for appropriate counseling. Here, we report the clinical characteristics of a large series of PMS2 mutation carriers. METHODS We performed PMS2 mutation analysis using long-range polymerase chain reaction and multiplex ligation-dependent probe amplification for 99 probands diagnosed with Lynch syndrome-associated tumors showing isolated loss of PMS2 by immunohistochemistry. Penetrance was calculated using a modified segregation analysis adjusting for ascertainment. RESULTS Germ-line PMS2 mutations were detected in 62% of probands (n = 55 monoallelic; 6 biallelic). Among families with monoallelic PMS2 mutations, 65.5% met revised Bethesda guidelines. Compared with the general population, in mutation carriers, the incidence of colorectal cancer was 5.2-fold higher, and the incidence of endometrial cancer was 7.5-fold higher. In North America, this translates to a cumulative cancer risk to age 70 years of 15%-20% for colorectal cancer, 15% for endometrial cancer, and 25%-32% for any Lynch syndrome-associated cancer. No elevated risk for non-Lynch syndrome-associated cancers was observed. CONCLUSIONS PMS2 mutations contribute significantly to Lynch syndrome, but the penetrance for monoallelic mutation carriers appears to be lower than that for the other mismatch repair genes. Modified counseling and cancer surveillance guidelines for PMS2 mutation carriers are proposed.


The American Journal of Gastroenterology | 2015

ACG Clinical Guideline: Genetic Testing and Management of Hereditary Gastrointestinal Cancer Syndromes

Sapna Syngal; Randall E. Brand; James M. Church; Francis M. Giardiello; Heather Hampel; Randall W. Burt

This guideline presents recommendations for the management of patients with hereditary gastrointestinal cancer syndromes. The initial assessment is the collection of a family history of cancers and premalignant gastrointestinal conditions and should provide enough information to develop a preliminary determination of the risk of a familial predisposition to cancer. Age at diagnosis and lineage (maternal and/or paternal) should be documented for all diagnoses, especially in first- and second-degree relatives. When indicated, genetic testing for a germline mutation should be done on the most informative candidate(s) identified through the family history evaluation and/or tumor analysis to confirm a diagnosis and allow for predictive testing of at-risk relatives. Genetic testing should be conducted in the context of pre- and post-test genetic counseling to ensure the patient’s informed decision making. Patients who meet clinical criteria for a syndrome as well as those with identified pathogenic germline mutations should receive appropriate surveillance measures in order to minimize their overall risk of developing syndrome-specific cancers. This guideline specifically discusses genetic testing and management of Lynch syndrome, familial adenomatous polyposis (FAP), attenuated familial adenomatous polyposis (AFAP), MUTYH-associated polyposis (MAP), Peutz–Jeghers syndrome, juvenile polyposis syndrome, Cowden syndrome, serrated (hyperplastic) polyposis syndrome, hereditary pancreatic cancer, and hereditary gastric cancer.


Genetics in Medicine | 2009

EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome

Glenn E. Palomaki; Monica R. McClain; Stephanie Melillo; Heather Hampel; Stephen N. Thibodeau

1. Clarifying how to define the clinical disorder—Lynch syndrome. In this supplementary review, Lynch syndrome refers to individuals with a predisposition to CRC and certain other malignancies as a result of a germline mismatch repair (MMR) gene mutation—including those with an existing cancer and those who have not yet developed cancer. This definition allows planned analyses of clinical validity and utility to be more straightforward. Several recent editorials and publications recommend that the ambiguous term HNPCC be abandoned and that this clarified definition of Lynch syndrome should be used instead. 2. Removing family history from consideration as a preliminary test. A previous evidence review showed that screening performance of both the Amsterdam and the Bethesda criteria to identify individuals with Lynch syndrome were highly heterogeneous, possibly due to differences among the populations tested. In a general population, Amsterdam criteria are associated with relatively low sensitivity (28‐45%), but high specificity (99%), whereas Bethesda criteria are associated with higher sensitivity (73‐91%), but at the cost of lower specificity (82‐77%). Neither provides the necessary high sensitivity/specificity in a reliable and consistent manner. There are also gaps in knowledge relating to the time required to


American Journal of Pathology | 2000

Epigenetic PTEN silencing in malignant melanomas without PTEN mutation.

Xiao-Ping Zhou; Oliver Gimm; Heather Hampel; Theodore H. Niemann; Michael J. Walker; Charis Eng

A tumor suppressor gene at 10q 23.3, designated PTEN, encoding a dual specificity phosphatase with lipid and protein phosphatase activity, has been shown to play an important role in the pathogenesis of a variety of human cancers. Germline mutations in PTEN cause Cowden syndrome (CS), which is characterized by multiple hamartomas and a high risk of breast and thyroid cancers. Frequent loss of heterozygosity at 10q is found in both early and advanced-stage sporadic melanomas; however, mutations or deletions in PTEN are detected mainly in melanoma cell lines. In this study, we examined PTEN expression in 34 unselected sporadic melanomas (4 primary melanomas, 30 metastases) using immunohistochemistry and correlated this with the results of structural studies of this gene. Immunostaining of 34 melanoma samples revealed no PTEN expression in 5 (15%) and low PTEN expression in 17 (50%), whereas the rest of the tumors (35%) had high levels of expression. Hemizygous deletion was found in 32% of the tumors but neither intragenic PTEN mutation nor biallelic deletion was found in any of the samples. Of the 5 melanomas showing no PTEN expression, 4 had no mutation or deletion of PTEN. Of the 13 tumors having weak PTEN immunoreactivity and informative loss of heterozygosity results, 6 had evidence of hemizygous allelic loss of PTEN while the remaining 7 had intact PTEN. These results strongly support PTEN as a major tumor suppressor on 10q involved in melanoma tumorigenesis and suggest an epigenetic mechanism of biallelic functional inactivation not previously observed in other cancers where PTEN might be involved.


American Journal of Human Genetics | 2001

Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of cowden and bannayan-riley-ruvalcaba syndromes

Xiao-Ping Zhou; Kelly Woodford-Richens; Rainer Lehtonen; Keisuke Kurose; Micheala A. Aldred; Heather Hampel; Virpi Launonen; Sanno Virta; Robert Pilarski; Reijo Salovaara; Walter F. Bodmer; Beth A. Conrad; Malcolm G. Dunlop; Shirley Hodgson; Takeo Iwama; Heikki Järvinen; Ilmo Kellokumpu; Jin Cheon Kim; Barbara A. Leggett; David Markie; Jukka-Pekka Mecklin; Kay Neale; Robin K. S. Phillips; Juan Piris; Paul Rozen; Richard S. Houlston; Lauri A. Aaltonen; Ian Tomlinson; Charis Eng

Juvenile polyposis syndrome (JPS) is an inherited hamartomatous-polyposis syndrome with a risk for colon cancer. JPS is a clinical diagnosis by exclusion, and, before susceptibility genes were identified, JPS could easily be confused with other inherited hamartoma syndromes, such as Bannayan-Riley-Ruvalcaba syndrome (BRRS) and Cowden syndrome (CS). Germline mutations of MADH4 (SMAD4) have been described in a variable number of probands with JPS. A series of familial and isolated European probands without MADH4 mutations were analyzed for germline mutations in BMPR1A, a member of the transforming growth-factor beta-receptor superfamily, upstream from the SMAD pathway. Overall, 10 (38%) probands were found to have germline BMPR1A mutations, 8 of which resulted in truncated receptors and 2 of which resulted in missense alterations (C124R and C376Y). Almost all available component tumors from mutation-positive cases showed loss of heterozygosity (LOH) in the BMPR1A region, whereas those from mutation-negative cases did not. One proband with CS/CS-like phenotype was also found to have a germline BMPR1A missense mutation (A338D). Thus, germline BMPR1A mutations cause a significant proportion of cases of JPS and might define a small subset of cases of CS/BRRS with specific colonic phenotype.

Collaboration


Dive into the Heather Hampel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wendy L. Frankel

The Ohio State University Wexner Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge