Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heather Huot Creasy is active.

Publication


Featured researches published by Heather Huot Creasy.


Science | 2010

A catalog of reference genomes from the human microbiome.

Karen E. Nelson; George M. Weinstock; Sarah K. Highlander; Kim C. Worley; Heather Huot Creasy; Jennifer R. Wortman; Douglas B. Rusch; Makedonka Mitreva; Erica Sodergren; Asif T. Chinwalla; Michael Feldgarden; Dirk Gevers; Brian J. Haas; Ramana Madupu; Doyle V. Ward; Bruce Birren; Richard A. Gibbs; Barbara A. Methé; Joseph F. Petrosino; Robert L. Strausberg; Granger Sutton; Owen White; Richard Wilson; Scott Durkin; Michelle G. Giglio; Sharvari Gujja; Clint Howarth; Chinnappa D. Kodira; Nikos C. Kyrpides; Teena Mehta

News from the Inner Tube of Life A major initiative by the U.S. National Institutes of Health to sequence 900 genomes of microorganisms that live on the surfaces and orifices of the human body has established standardized protocols and methods for such large-scale reference sequencing. By combining previously accumulated data with new data, Nelson et al. (p. 994) present an initial analysis of 178 bacterial genomes. The sampling so far barely scratches the surface of the microbial diversity found on humans, but the work provides an important baseline for future analyses. Standardized protocols and methods are being established for large-scale sequencing of the microorganisms living on humans. The human microbiome refers to the community of microorganisms, including prokaryotes, viruses, and microbial eukaryotes, that populate the human body. The National Institutes of Health launched an initiative that focuses on describing the diversity of microbial species that are associated with health and disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference genomes, coupled to metagenomic sequencing from multiple body sites. Here we present results from an initial reference genome sequencing of 178 microbial genomes. From 547,968 predicted polypeptides that correspond to the gene complement of these strains, previously unidentified (“novel”) polypeptides that had both unmasked sequence length greater than 100 amino acids and no BLASTP match to any nonreference entry in the nonredundant subset were defined. This analysis resulted in a set of 30,867 polypeptides, of which 29,987 (~97%) were unique. In addition, this set of microbial genomes allows for ~40% of random sequences from the microbiome of the gastrointestinal tract to be associated with organisms based on the match criteria used. Insights into pan-genome analysis suggest that we are still far from saturating microbial species genetic data sets. In addition, the associated metrics and standards used by our group for quality assurance are presented.


Journal of Bacteriology | 2011

Genome Sequences of the Biotechnologically Important Bacillus megaterium Strains QM B1551 and DSM319

Mark Eppinger; Boyke Bunk; Mitrick A. Johns; Janaka N. Edirisinghe; Kirthi K. Kutumbaka; Sara S. K. Koenig; Heather Huot Creasy; M. J. Rosovitz; David R. Riley; Sean C. Daugherty; Madeleine Martin; Liam D. H. Elbourne; Ian T. Paulsen; Rebekka Biedendieck; Christopher Braun; Scott Grayburn; Sourabh Dhingra; Vitaliy Lukyanchuk; Barbara Ball; Riaz Ul-Qamar; Jürgen Seibel; Erhard Bremer; Dieter Jahn; Jacques Ravel; Patricia S. Vary

Bacillus megaterium is deep-rooted in the Bacillus phylogeny, making it an evolutionarily key species and of particular importance in understanding genome evolution, dynamics, and plasticity in the bacilli. B. megaterium is a commercially available, nonpathogenic host for the biotechnological production of several substances, including vitamin B(12), penicillin acylase, and amylases. Here, we report the analysis of the first complete genome sequences of two important B. megaterium strains, the plasmidless strain DSM319 and QM B1551, which harbors seven indigenous plasmids. The 5.1-Mbp chromosome carries approximately 5,300 genes, while QM B1551 plasmids represent a combined 417 kb and 523 genes, one of the largest plasmid arrays sequenced in a single bacterial strain. We have documented extensive gene transfer between the plasmids and the chromosome. Each strain carries roughly 300 strain-specific chromosomal genes that account for differences in their experimentally confirmed phenotypes. B. megaterium is able to synthesize vitamin B(12) through an oxygen-independent adenosylcobalamin pathway, which together with other key energetic and metabolic pathways has now been fully reconstructed. Other novel genes include a second ftsZ gene, which may be responsible for the large cell size of members of this species, as well as genes for gas vesicles, a second β-galactosidase gene, and most but not all of the genes needed for genetic competence. Comprehensive analyses of the global Bacillus gene pool showed that only an asymmetric region around the origin of replication was syntenic across the genus. This appears to be a characteristic feature of the Bacillus spp. genome architecture and may be key to their sporulating lifestyle.


Standards in Genomic Sciences | 2011

The IGS Standard Operating Procedure for Automated Prokaryotic Annotation

Kevin Galens; Joshua Orvis; Sean J. Daugherty; Heather Huot Creasy; Sam Angiuoli; Owen White; Jennifer R. Wortman; Anup Mahurkar; Michelle G. Giglio

The Institute for Genome Sciences (IGS) has developed a prokaryotic annotation pipeline that is used for coding gene/RNA prediction and functional annotation of Bacteria and Archaea. The fully automated pipeline accepts one or many genomic sequences as input and produces output in a variety of standard formats. Functional annotation is primarily based on similarity searches and motif finding combined with a hierarchical rule based annotation system. The output annotations can also be loaded into a relational database and accessed through visualization tools.


Systematic and Applied Microbiology | 2014

Evidence for the existence of two new members of the family Chlamydiaceae and proposal of Chlamydia avium sp. nov. and Chlamydia gallinacea sp. nov.

Konrad Sachse; Karine Laroucau; Konstantin Riege; Stefanie Wehner; Meik Dilcher; Heather Huot Creasy; Manfred Weidmann; Garry Myers; Fabien Vorimore; Nadia Vicari; Simone Magnino; Elisabeth M. Liebler-Tenorio; Anke Ruettger; Patrik M. Bavoil; Frank T. Hufert; Ramon Rosselló-Móra; Manja Marz

The family Chlamydiaceae with the recombined single genus Chlamydia currently comprises nine species, all of which are obligate intracellular organisms distinguished by a unique biphasic developmental cycle. Anecdotal evidence from epidemiological surveys in flocks of poultry, pigeons and psittacine birds have indicated the presence of non-classified chlamydial strains, some of which may act as pathogens. In the present study, phylogenetic analysis of ribosomal RNA and ompA genes, as well as multi-locus sequence analysis of 11 field isolates were conducted. All independent analyses assigned the strains into two different clades of monophyletic origin corresponding to pigeon and psittacine strains or poultry isolates, respectively. Comparative genome analysis involving the type strains of currently accepted Chlamydiaceae species and the designated type strains representing the two new clades confirmed that the latter could be classified into two different species as their average nucleotide identity (ANI) values were always below 94%, both with the closest relative species and between themselves. In view of the evidence obtained from the analyses, we propose the addition of two new species to the current classification: Chlamydia avium sp. nov. comprising strains from pigeons and psittacine birds (type strain 10DC88(T); DSMZ: DSM27005(T), CSUR: P3508(T)) and Chlamydia gallinacea sp. nov. comprising strains from poultry (type strain 08-1274/3(T); DSMZ: DSM27451(T), CSUR: P3509(T)).


Nature | 2017

Strains, functions and dynamics in the expanded Human Microbiome Project

Jason Lloyd-Price; Anup Mahurkar; Gholamali Rahnavard; Jonathan Crabtree; Joshua Orvis; A. Brantley Hall; Arthur Brady; Heather Huot Creasy; Carrie McCracken; Michelle G. Giglio; Daniel McDonald; Eric A. Franzosa; Rob Knight; Owen White; Curtis Huttenhower

The characterization of baseline microbial and functional diversity in the human microbiome has enabled studies of microbiome-related disease, diversity, biogeography, and molecular function. The National Institutes of Health Human Microbiome Project has provided one of the broadest such characterizations so far. Here we introduce a second wave of data from the study, comprising 1,631 new metagenomes (2,355 total) targeting diverse body sites with multiple time points in 265 individuals. We applied updated profiling and assembly methods to provide new characterizations of microbiome personalization. Strain identification revealed subspecies clades specific to body sites; it also quantified species with phylogenetic diversity under-represented in isolate genomes. Body-wide functional profiling classified pathways into universal, human-enriched, and body site-enriched subsets. Finally, temporal analysis decomposed microbial variation into rapidly variable, moderately variable, and stable subsets. This study furthers our knowledge of baseline human microbial diversity and enables an understanding of personalized microbiome function and dynamics.


PLOS ONE | 2011

Castor Bean Organelle Genome Sequencing and Worldwide Genetic Diversity Analysis

Máximo Rivarola; Jeffrey T. Foster; Agnes P. Chan; Amber Williams; Danny W. Rice; Xinyue Liu; Admasu Melake-Berhan; Heather Huot Creasy; Daniela Puiu; M. J. Rosovitz; Hoda Khouri; Stephen M. Beckstrom-Sternberg; Gerard J. Allan; Paul Keim; Jacques Ravel; Pablo D. Rabinowicz

Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.


Journal of Bacteriology | 2011

Genome Sequence of the Obligate Intracellular Animal Pathogen Chlamydia pecorum E58

Sergio Mojica; Heather Huot Creasy; Sean C. Daugherty; Timothy D. Read; Teayoun Kim; Bernhard Kaltenboeck; Patrik M. Bavoil; Garry Myers

Chlamydia pecorum is an obligate intracellular bacterial pathogen that causes diverse disease in a wide variety of economically important mammals. We report the finished complete genome sequence of C. pecorum E58, the type strain for the species.


Mbio | 2014

Early MicroRNA Expression Profile as a Prognostic Biomarker for the Development of Pelvic Inflammatory Disease in a Mouse Model of Chlamydial Genital Infection

Laxmi Yeruva; Garry Myers; Nicole Spencer; Heather Huot Creasy; Nancy E. Adams; Anthony T. Maurelli; Grant R. McChesney; Mario A. Cleves; Jacques Ravel; Anne K. Bowlin; Roger G. Rank

ABSTRACT It is not currently possible to predict the probability of whether a woman with a chlamydial genital infection will develop pelvic inflammatory disease (PID). To determine if specific biomarkers may be associated with distinct chlamydial pathotypes, we utilized two Chlamydia muridarum variants (C. muridarum Var001 [CmVar001] and CmVar004) that differ in their abilities to elicit upper genital tract pathology in a mouse model. CmVar004 has a lower growth rate in vitro and induces pathology in only 20% of C57BL/6 mouse oviducts versus 83.3% of oviducts in CmVar001-infected mice. To determine if chemokine and cytokine production within 24 h of infection is associated with the outcome of pathology, levels of 15 chemokines and cytokines were measured. CmVar004 infection induced significantly lower levels of CXCL1, CXCL2, tumor necrosis factor alpha (TNF-α), and CCL2 in comparison to CmVar001 infection with similar rRNA (rs16) levels for Chlamydiae. A combination of microRNA (miRNA) sequencing and quantitative real-time PCR (qRT-PCR) analysis of 134 inflammation-related miRNAs was performed 24 h postinfection to determine if the chemokine/cytokine responses would also be reflected in miRNA expression profiles. Interestingly, 12 miRNAs (miR-135a-5p, miR298-5p, miR142-3p, miR223-3p, miR299a-3p, miR147-3p, miR105, miR325-3p, miR132-3p, miR142-5p, miR155-5p, and miR-410-3p) were overexpressed during CmVar004 infection compared to CmVar001 infection, inversely correlating with the respective chemokine/cytokine responses. To our knowledge, this is the first report demonstrating that early biomarkers elicited in the host can differentiate between two pathological variants of chlamydiae and be predictive of upper tract disease. IMPORTANCE It is apparent that an infecting chlamydial population consists of multiple genetic variants with differing capabilities of eliciting a pathological response; thus, it may be possible to identify biomarkers specific for a given virulence pathotype. miRNAs are known to regulate genes that in turn regulate signaling pathways involved in disease pathogenesis. Importantly, miRNAs are stable and can reflect a tissue response and therefore have the potential to be biomarkers of disease severity. Currently, with respect to chlamydial infections, there is no way to predict whether an infected patient is more or less likely to develop PID. However, data presented in this study indicate that the expression of a specific miRNA profile associated with a virulent variant early in the infection course may be predictive of an increased risk of pelvic inflammatory disease, allowing more aggressive treatment before significant pathology develops. It is apparent that an infecting chlamydial population consists of multiple genetic variants with differing capabilities of eliciting a pathological response; thus, it may be possible to identify biomarkers specific for a given virulence pathotype. miRNAs are known to regulate genes that in turn regulate signaling pathways involved in disease pathogenesis. Importantly, miRNAs are stable and can reflect a tissue response and therefore have the potential to be biomarkers of disease severity. Currently, with respect to chlamydial infections, there is no way to predict whether an infected patient is more or less likely to develop PID. However, data presented in this study indicate that the expression of a specific miRNA profile associated with a virulent variant early in the infection course may be predictive of an increased risk of pelvic inflammatory disease, allowing more aggressive treatment before significant pathology develops.


Journal of Bacteriology | 2011

Genome Sequences of the Zoonotic Pathogens Chlamydia psittaci 6BC and Cal10

Valerie Grinblat-Huse; Elliott F. Drabek; Heather Huot Creasy; Sean C. Daugherty; Kristine M Jones; Ivette Santana-Cruz; Luke J. Tallon; Timothy D. Read; Thomas P. Hatch; Patrik M. Bavoil; Garry Myers

Chlamydia psittaci is a highly prevalent avian pathogen and the cause of a potentially lethal zoonosis, causing life-threatening pneumonia in humans. We report the genome sequences of C. psittaci 6BC, the prototype strain of the species, and C. psittaci Cal10, a widely used laboratory strain.


Genome Biology | 2010

A data analysis and coordination center for the human microbiome project

Jennifer R. Wortman; Michelle G. Giglio; Heather Huot Creasy; Amy Chen; Konstantinos Liolios; Ken Chu; Noam J. Davidovics; Mark Mazaitis; Todd Z. DeSantis; Navjeet Singh; Joshua Orvis; Jonathan Crabtree; Victor Felix; Catherine Jordan; Anup Mahurkar; Rob Knight; Gary L. Andersen; Nikos C. Kyrpides; Victor Markowitz; Owen White

The Human Microbiome Project (HMP) was launched by the National Institutes of Health (NIH) Roadmap for Medical Research and is designed to fuel research into the microbes that live in the various environments of the human body [1]. A major goal of the HMP is to look for correlations between changes in the microbiome and human health. The HMP will generate unprecedented amounts of sequence, annotation and metadata. The analysis of this data requires the ability to collect, integrate, and standardize information of different types and from different sources. The HMP Data Analysis and Coordination Center (DACC) is the central repository for all HMP data, providing a specialized data management and analysis infrastructure to support the collection, integration and standardization of HMP data and facilitate research. HMP data sets will include over 1000 reference genomes isolated from the human body, as well as 16S ribosomal RNA, and whole metagenome shotgun sequencing of samples collected from multiple body sites and individuals. Successful data integration and standardization will rely on the use of controlled vocabularies, the application of quality control measures, and the development of standard operating procedures. The DACC web portal (http://hmpdacc.org) will provide multiple analysis resources to the research community including data query and visualization, comparative genomics, 16S rRNA analysis, and comparative metagenomic community analysis. Reference genome status and relevant metadata are available through the HMP Project catalog (http://www.hmpdacc.org/project_catalog.html) while annotated HMP reference genomes are provided as part of IMG/HMP (http://www.hmpdacc-resources.org/img_hmp), an HMP specific version of the Integrated Microbial Genomes (IMG) data management and analysis system. IMG/HMP serves as a community resource for comparative analysis of HMP genomes in the comprehensive integrated context of all publicly available microbial genomes.

Collaboration


Dive into the Heather Huot Creasy's collaboration.

Top Co-Authors

Avatar

Garry Myers

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Owen White

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge