Heather J. Galipeau
McMaster University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heather J. Galipeau.
Nature Reviews Gastroenterology & Hepatology | 2015
Elena F. Verdu; Heather J. Galipeau; Bana Jabri
Several studies point towards alteration in gut microbiota composition and function in coeliac disease, some of which can precede the onset of disease and/or persist when patients are on a gluten-free diet. Evidence also exists that the gut microbiota might promote or reduce coeliac-disease-associated immunopathology. However, additional studies are required in humans and in mice (using gnotobiotic technology) to determine cause–effect relationships and to identify agents for modulating the gut microbiota as a therapeutic or preventative approach for coeliac disease. In this Review, we summarize the current evidence for altered gut microbiota composition in coeliac disease and discuss how the interplay between host genetics, environmental factors and the intestinal microbiota might contribute to its pathogenesis. Moreover, we highlight the importance of utilizing animal models and long-term clinical studies to gain insight into the mechanisms through which host–microbial interactions can influence host responses to gluten.
Gastroenterology | 2012
Maud Pinier; Gregor Fuhrmann; Heather J. Galipeau; Nathalie Rivard; Joseph A. Murray; Chella S. David; Hana Drašarová; Ludmila Tučková; Jean-Christophe Leroux; Elena F. Verdu
BACKGROUND & AIMS Copolymers of hydroxyethyl methacrylate and styrene sulfonate complex with isolated gliadin (the toxic fraction of gluten) and prevent damage to the intestinal barrier in HLA-HCD4/DQ8 mice. We studied the activity toward gluten and hordein digestion and biologic effects of poly(hydroxyethyl methacrylate-co-styrene sulfonate (P(HEMA-co-SS)). We also investigated the effect of gliadin complex formation in intestinal biopsy specimens from patients with celiac disease. METHODS We studied the ability of P(HEMA-co-SS) to reduce digestion of wheat gluten and barley hordein into immunotoxic peptides using liquid chromatography-mass spectrometry. The biodistribution and pharmacokinetic profile of orally administered P(HEMA-co-SS) was established in rodents using tritium-labeled polymer. We assessed the capacity of P(HEMA-co-SS) to prevent the immunologic and intestinal effects induced by a gluten-food mixture in gluten-sensitized HLA-HCD4/DQ8 mice after short-term and long-term administration. We measured the effects of gliadin complex formation on cytokine release ex vivo using intestinal biopsy specimens from patients with celiac disease. RESULTS P(HEMA-co-SS) reduced digestion of wheat gluten and barley hordein in vitro, thereby decreasing formation of toxic peptides associated with celiac disease. After oral administration to rodents, P(HEMA-co-SS) was predominantly excreted in feces, even in the presence of low-grade mucosal inflammation and increased intestinal permeability. In gluten-sensitized mice, P(HEMA-co-SS) reduced paracellular permeability, normalized anti-gliadin immunoglobulin A in intestinal washes, and modulated the systemic immune response to gluten in a food mixture. Furthermore, incubation of P(HEMA-co-SS) with mucosal biopsy specimens from patients with celiac disease showed that secretion of tumor necrosis factor-α was reduced in the presence of partially digested gliadin. CONCLUSIONS The copolymer P(HEMA-co-SS) reduced digestion of wheat gluten and barley hordein and attenuated the immune response to gluten in a food mixture in rodents. It might be developed to prevent or reduce gluten-induced disorders in humans.
Journal of Immunology | 2011
Heather J. Galipeau; Nestor E. Rulli; Jennifer Jury; Xianxi Huang; Romina E. Araya; Joseph A. Murray; Chella S. David; Fernando G. Chirdo; Kathy McCoy; Elena F. Verdu
Celiac disease (CD) is frequently diagnosed in patients with type 1 diabetes (T1D), and T1D patients can exhibit Abs against tissue transglutaminase, the auto-antigen in CD. Thus, gliadin, the trigger in CD, has been suggested to have a role in T1D pathogenesis. The objective of this study was to investigate whether gliadin contributes to enteropathy and insulitis in NOD-DQ8 mice, an animal model that does not spontaneously develop T1D. Gliadin-sensitized NOD-DQ8 mice developed moderate enteropathy, intraepithelial lymphocytosis, and barrier dysfunction, but not insulitis. Administration of anti-CD25 mAbs before gliadin-sensitization induced partial depletion of CD25+Foxp3+ T cells and led to severe insulitis, but did not exacerbate mucosal dysfunction. CD4+ T cells isolated from pancreatic lymph nodes of mice that developed insulitis showed increased proliferation and proinflammatory cytokines after incubation with gliadin but not with BSA. CD4+ T cells isolated from nonsensitized controls did not response to gliadin or BSA. In conclusion, gliadin sensitization induced moderate enteropathy in NOD-DQ8 mice. However, insulitis development required gliadin-sensitization and partial systemic depletion of CD25+Foxp3+ T cells. This humanized murine model provides a mechanistic link to explain how the mucosal intolerance to a dietary protein can lead to insulitis in the presence of partial regulatory T cell deficiency.
American Journal of Pathology | 2015
Heather J. Galipeau; Justin McCarville; Sina Huebener; Owen Litwin; Marlies Meisel; Bana Jabri; Yolanda Sanz; Joseph A. Murray; Manel Jordana; Armin Alaedini; Fernando G. Chirdo; Elena F. Verdu
Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. The recent increase in CD incidence suggests that additional environmental factors, such as intestinal microbiota alterations, are involved in its pathogenesis. However, there is no direct evidence of modulation of gluten-induced immunopathology by the microbiota. We investigated whether specific microbiota compositions influence immune responses to gluten in mice expressing the human DQ8 gene, which confers moderate CD genetic susceptibility. Germ-free mice, clean specific-pathogen-free (SPF) mice colonized with a microbiota devoid of opportunistic pathogens and Proteobacteria, and conventional SPF mice that harbor a complex microbiota that includes opportunistic pathogens were used. Clean SPF mice had attenuated responses to gluten compared to germ-free and conventional SPF mice. Germ-free mice developed increased intraepithelial lymphocytes, markers of intraepithelial lymphocyte cytotoxicity, gliadin-specific antibodies, and a proinflammatory gliadin-specific T-cell response. Antibiotic treatment, leading to Proteobacteria expansion, further enhanced gluten-induced immunopathology in conventional SPF mice. Protection against gluten-induced immunopathology in clean SPF mice was reversed after supplementation with a member of the Proteobacteria phylum, an enteroadherent Escherichia coli isolated from a CD patient. The intestinal microbiota can both positively and negatively modulate gluten-induced immunopathology in mice. In subjects with moderate genetic susceptibility, intestinal microbiota changes may be a factor that increases CD risk.
Applied and Environmental Microbiology | 2013
Jane M. Natividad; Christina L. Hayes; Jean-Paul Motta; Jennifer Jury; Heather J. Galipeau; Vivek Philip; Clara L. Garcia-Rodenas; Hiroshi Kiyama; Premysl Bercik; Elena F. Verdu
ABSTRACT The intestinal microbiota is a key determinant of gut homeostasis, which is achieved, in part, through regulation of antimicrobial peptide secretion. The aim of this study was to determine the efficiency by which members of the intestinal microbiota induce the antimicrobial peptide REGIII and to elucidate the underlying pathways. We showed that germfree mice have low levels of REGIII-γ in their ileum and colon compared to mice with different intestinal microbiota backgrounds. Colonization with a microbiota of low diversity (altered Schaedler flora) did not induce the expression of REGIII-γ as effectively as a complex community (specific pathogen free). Monocolonization with the probiotic Bifidobacterium breve, but not with the nonprobiotic commensal Escherichia coli JM83, upregulated REGIII-γ expression. Induction of REGIII-γ by B. breve was abrogated in mice lacking MyD88 and Ticam1 signaling. Both live and heat-inactivated B. breve but not spent culture medium from B. breve induced the expression of REGIII-α, the human ortholog and homolog of REGIII-γ, in human colonic epithelial cells (Caco-2). Taken together, the results suggest that REGIII-γ expression in the intestine correlates with the richness of microbiota composition. Also, specific bacteria such as Bifidobacterium breve NCC2950 effectively induce REGIII production in the intestine via the MyD88-Ticam1 pathway. Treatment with this probiotic may enhance the mucosal barrier and protect the host from infection and inflammation.
The American Journal of Gastroenterology | 2014
Heather J. Galipeau; Michelle Wiepjes; Jean–Paul Motta; Jessica D. Schulz; Jennifer Jury; Jane M. Natividad; Ines Pinto-Sanchez; Daniel Sinclair; Perrine Rousset; Rebeca Martin-Rosique; Luis G. Bermúdez-Humarán; Jean-Christophe Leroux; Joseph A. Murray; Edgardo Smecuol; Julio C. Bai; Nathalie Vergnolle; Philippe Langella; Elena F. Verdu
OBJECTIVES:Elafin, an endogenous serine protease inhibitor, modulates colonic inflammation. We investigated the role of elafin in celiac disease (CD) using human small intestinal tissues and in vitro assays of gliadin deamidation. We also investigated the potential beneficial effects of elafin in a mouse model of gluten sensitivity.METHODS:Epithelial elafin expression in the small intestine of patients with active CD, treated CD, and controls without CD was determined by immunofluorescence. Interaction of elafin with human tissue transglutaminase-2 (TG-2) was investigated in vitro. The 33-mer peptide, a highly immunogenic gliadin peptide, was incubated with TG-2 and elafin at different concentrations. The degree of deamidation of the 33-mer peptide was analyzed by liquid chromatography-mass spectrometry. Elafin was delivered to the intestine of gluten-sensitive mice using a recombinant Lactococcus lactis vector. Small intestinal barrier function, inflammation, proteolytic activity, and zonula occludens-1 (ZO-1) expression were assessed.RESULTS:Elafin expression in the small intestinal epithelium was lower in patients with active CD compared with control patients. In vitro, elafin significantly slowed the kinetics of the deamidation of the 33-mer peptide to its more immunogenic form. Treatment of gluten-sensitive mice with elafin delivered by the L. lactis vector normalized inflammation, improved permeability, and maintained ZO-1 expression.CONCLUSIONS:The decreased elafin expression in the small intestine of patients with active CD, the reduction of 33-mer peptide deamidation by elafin, coupled to the barrier enhancing and anti-inflammatory effects observed in gluten-sensitive mice, suggest that this molecule may have pathophysiological and therapeutic importance in gluten-related disorders.
Inflammatory Bowel Diseases | 2015
Jane M. Natividad; Maria Ines Pinto-Sanchez; Heather J. Galipeau; Jennifer Jury; Manel Jordana; W. Reinisch; Stephen M. Collins; Premsyl Bercik; Michael G. Surette; Emma Allen-Vercoe; Elena F. Verdu
Background:Alterations in the intestinal microbiota, characterized by depletion of anti-inflammatory bacteria, such as Firmicutes, in patients with ulcerative colitis (UC) have prompted interest in microbiota-modulating strategies for this condition. The aim of this study was to evaluate the role of fecal and synthetic human microbial ecosystems, low or enriched in Firmicutes, on colitis susceptibility and host immune responses. Methods:The microbiota of selected healthy and UC human donors was characterized by culture method and 16S rRNA-based sequencing. Germ-free mice were colonized with fecal or a synthetic ecosystem enriched (healthy donors) or low (UC donors) in Firmicutes. Experimental colitis was induced using dextran sodium sulfate. Colon transcriptome and colon lamina propria cells were evaluated in mice postcolonization by RNA-seq and flow cytometry, respectively, and T helper (TH) 17 differentiation was assessed in vitro. Results:Mice colonized with microbiota from patients with UC low in Firmicutes had increased sensitivity to colitis compared with mice colonized with fecal or synthetic ecosystems rich in Firmicutes. Microbiota low in Firmicutes increased expression of TH17-related genes and expansion of interleukin-17A–expressing CD4+ cells in vivo. Supplementation with bacterial isolates belonging to the Firmicutes phylum abrogated the heightened TH17 responses in vitro. Conclusions:A microbiota rich in Firmicutes derived from fecal samples of a healthy human donor, or assembled synthetically, downregulated colonic inflammation and TH17 pathways in mice. The results support the use of ecobiotherapy strategies, enriched in Firmicutes, for the prevention or treatment of UC.
Gut microbes | 2014
Heather J. Galipeau; Elena F. Verdu
Immediately following birth, the gastrointestinal tract is colonized with a complex community of bacteria, which helps shape the immune system. Under conditions of health, the immune system is able to differentiate between innocuous antigens, including food protein and commensals, and harmful antigens such as pathogens. However, patients with celiac disease (CD) develop an intolerance to gluten proteins which results in a pro-inflammatory T-cell mediated immune response with production of anti-gluten and anti-tissue transglutaminase antibodies. This adaptive immune response, in conjunction with activation of innate inflammatory cells, lead to destruction of the small intestinal mucosa. Overall 30% of the global population has genetic risk to develop CD. However, only a small proportion develop CD, suggesting that additional environmental factors must play a role in disease pathogenesis. Alterations in small intestinal microbial composition have recently been associated with active CD, indicating a possible role for the microbiota in CD. However, studies demonstrating causality are lacking. This review will highlight the recent data on the potential role of the microbiota in CD pathogenesis, the potential mechanisms, and discuss future research directions.
PLOS ONE | 2014
Justin McCarville; Yotam Nisemblat; Heather J. Galipeau; Jennifer Jury; Rinat Tabakman; Ad Cohen; Esmira Naftali; Bela Neiman; Efrat Halbfinger; Joseph A. Murray; Arivarasu Natarajan Anbazhagan; Pradeep K. Dudeja; Alexander Varvak; Jean-Christophe Leroux; Elena F. Verdu
Celiac disease (CD) is an autoimmune disorder in individuals that carry DQ2 or DQ8 MHC class II haplotypes, triggered by the ingestion of gluten. There is no current treatment other than a gluten-free diet (GFD). We have previously shown that the BL-7010 copolymer poly(hydroxyethyl methacrylate-co-styrene sulfonate) (P(HEMA-co-SS)) binds with higher efficiency to gliadin than to other proteins present in the small intestine, ameliorating gliadin-induced pathology in the HLA-HCD4/DQ8 model of gluten sensitivity. The aim of this study was to investigate the efficiency of two batches of BL-7010 to interact with gliadin, essential vitamins and digestive enzymes not previously tested, and to assess the ability of the copolymer to reduce gluten-associated pathology using the NOD-DQ8 mouse model, which exhibits more significant small intestinal damage when challenged with gluten than HCD4/DQ8 mice. In addition, the safety and systemic exposure of BL-7010 was evaluated in vivo (in rats) and in vitro (genetic toxicity studies). In vitro binding data showed that BL-7010 interacted with high affinity with gliadin and that BL-7010 had no interaction with the tested vitamins and digestive enzymes. BL-7010 was effective at preventing gluten-induced decreases in villus-to-crypt ratios, intraepithelial lymphocytosis and alterations in paracellular permeability and putative anion transporter-1 mRNA expression in the small intestine. In rats, BL-7010 was well-tolerated and safe following 14 days of daily repeated administration of 3000 mg/kg. BL-7010 did not exhibit any mutagenic effect in the genetic toxicity studies. Using complementary animal models and chronic gluten exposure the results demonstrate that administration of BL-7010 is effective and safe and that it is able to decrease pathology associated with gliadin sensitization warranting the progression to Phase I trials in humans.
Neurogastroenterology and Motility | 2016
Heather J. Galipeau; Elena F. Verdu
Intestinal permeability is a key feature of intestinal barrier function. Altered intestinal permeability is described in many chronic diseases and may be a risk factor for disease development and a target for emerging therapeutics. Thus, reliable and sensitive methods to measure intestinal permeability in both the clinical and preclinical setting are needed. There is currently a large array of tests to choose from, each with advantages and disadvantages. When possible, a combination of methods should be used. The choice of tests should be based on a deep understanding of intestinal barrier physiology and the recognition of their limitations. This mini‐review will highlight the advantages and limitations associated with intestinal permeability tests and will identify current problems in the field and how they can be addressed in the future.