Heather L. Stevenson
University of Texas Medical Branch
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heather L. Stevenson.
American Journal of Transplantation | 2016
A. J. Demetris; Christopher Bellamy; Stefan G. Hubscher; Jacqueline G. O'Leary; Parmjeet Randhawa; Sandy Feng; D. Neil; Robert B. Colvin; Geoffrey W. McCaughan; John J. Fung; A. Del Bello; F. P. Reinholt; Hironori Haga; Oyedele Adeyi; A. J. Czaja; Tom Schiano; M. I. Fiel; Maxwell L. Smith; M. Sebagh; R. Y. Tanigawa; F. Yilmaz; Graeme J. M. Alexander; L. Baiocchi; M. Balasubramanian; Ibrahim Batal; Atul K. Bhan; C. T. S. Cerski; F. Charlotte; M. E. De Vera; M. Elmonayeri
The Banff Working Group on Liver Allograft Pathology reviewed and discussed literature evidence regarding antibody‐mediated liver allograft rejection at the 11th (Paris, France, June 5–10, 2011), 12th (Comandatuba, Brazil, August 19–23, 2013), and 13th (Vancouver, British Columbia, Canada, October 5–10, 2015) meetings of the Banff Conference on Allograft Pathology. Discussion continued online. The primary goal was to introduce guidelines and consensus criteria for the diagnosis of liver allograft antibody‐mediated rejection and provide a comprehensive update of all Banff Schema recommendations. Included are new recommendations for complement component 4d tissue staining and interpretation, staging liver allograft fibrosis, and findings related to immunosuppression minimization. In an effort to create a single reference document, previous unchanged criteria are also included.
PLOS ONE | 2007
Bradley S. Schneider; Charles E. McGee; Jeffrey M. Jordan; Heather L. Stevenson; Lynn Soong; Stephen Higgs
Background The global emergence of West Nile virus (WNV) has highlighted the importance of mosquito-borne viruses. These are inoculated in vector saliva into the vertebrate skin and circulatory system. Arthropod-borne (arbo)viruses such as WNV are transmitted to vertebrates as an infectious mosquito probes the skin for blood, depositing the virus and saliva into the skin and circulation. Growing evidence has demonstrated that arthropod, and recently mosquito, saliva can have a profound effect on pathogen transmission efficiency, pathogenesis, and disease course. A potentially important aspect of natural infections that has been ignored is that in nature vertebrates are typically exposed to the feeding of uninfected mosquitoes prior to the mosquito that transmits WNV. The possibility that pre-exposure to mosquito saliva might modulate WNV infection was explored. Principal Findings Here we report that sensitization to mosquito saliva exacerbates viral infection. Prior exposure of mice to mosquito feeding resulted in increased mortality following WNV infection. This aggravated disease course was associated with enhanced early viral replication, increased interleukin-10 expression, and elevated influx of WNV-susceptible cell types to the inoculation site. This exacerbated disease course was mimicked by passive transfer of mosquito-sensitized serum. Significance This is the first report that sensitization to arthropod saliva can exacerbate arthropod-borne infection, contrary to previous studies with parasite and bacteria infections. This research suggests that in addition to the seroreactivity of the host to virus, it is important to take into account the immune response to vector feeding.
PLOS ONE | 2010
Bradley S. Schneider; Lynn Soong; Lark L. Coffey; Heather L. Stevenson; Charles E. McGee; Stephen Higgs
West Nile virus (WNV) is transmitted during mosquito bloodfeeding. Consequently, the first vertebrate cells to contact WNV are cells in the skin, followed by those in the draining lymph node. Macrophages and dendritic cells are critical early responders in host defense against WNV infection, not just because of their role in orchestrating the immune response, but also because of their importance as sites of early peripheral viral replication. Antigen-presenting cell (APC) signals have a profound effect on host antiviral responses and disease severity. During transmission, WNV is intimately associated with mosquito saliva. Due to the ability of mosquito saliva to affect inflammation and immune responses, and the importance of understanding early events in WNV infection, we investigated whether mosquito saliva alters APC signaling during arbovirus infection, and if alterations in cell recruitment occur when WNV infection is initiated with mosquito saliva. Accordingly, experiments were performed with cultured dendritic cells and macrophages, flow cytometry was used to characterize infiltrating cell types in the skin and lymph nodes during early infection, and real-time RT-PCR was employed to evaluate virus and cytokine levels. Our in vitro results suggest that mosquito saliva significantly decreases the expression of interferon-β and inducible nitric oxide synthase in macrophages (by as much as 50 and 70%, respectively), whilst transiently enhancing interleukin-10 (IL-10) expression. In vivo results indicate that the predominate effect of mosquito feeding is to significantly reduce the recruitment of T cells, leading the inoculation site of mice exposed to WNV alone to have up to 2.8 fold more t cells as mice infected in the presence of mosquito saliva. These shifts in cell population are associated with significantly elevated IL-10 and WNV (up to 4.0 and 10 fold, respectively) in the skin and draining lymph nodes. These results suggest that mosquito saliva dysregulates APC antiviral signaling, and reveal a possible mechanism for the observed enhancement of WNV disease mediated by mosquito saliva via a reduction of T lymphocyte and antiviral activity at the inoculation site, an elevated abundance of susceptible cell types, and a concomitant increase in immunoregulatory activity of IL-10.
Infection and Immunity | 2006
Nahed Ismail; Heather L. Stevenson; David H. Walker
ABSTRACT Intraperitoneal (i.p.) infection with a high dose of a highly virulent Ehrlichia strain (IOE) results in a toxic shock-like syndrome characterized by severe liver injury and systemic overproduction of tumor necrosis factor alpha (TNF-α) by CD8+ T cells. We examined the role of TNF-α and TNF receptors in high-dose-IOE-induced shock/liver injury. TNF receptor (TNFR) I/II−/− mice lacking both the p55 and p75 receptors for this cytokine were more resistant to IOE-induced liver injury than their wild-type background controls. TNFR I/II−/− mice survived longer, dying between 15 and 18 days, with evidence of mild liver necrosis/apoptosis. In contrast, wild-type mice were not rescued from the lethal effect of IOE by TNF-α neutralization. TNF-α-depleted mice developed severe liver injury and succumbed to disease between days 9 and 11 postinfection, similar to sham-treated, infected wild-type mice. Although IFN-γ production in the spleens of IOE-infected TNFR I/II−/− and TNF-α-depleted mice was higher than that detected in wild-type controls, these mice had higher bacterial burdens than infected controls. Following high-dose IOE challenge, TNFR I/II−/− and TNF-α-depleted mice have an early increase in IL-10 levels in sera and spleens, which was produced mainly by adherent spleen cells. In contrast, a late burst of interleukin-10 (IL-10) was observed in control mice. Nonadherent spleen cells were the major source of IL-10 in IOE-infected wild-type mice. We conclude that TNFR I/II and TNF-α participate in Ehrlichia-induced shock and host defense by regulating liver injury and controlling ehrlichial burden. Our data suggest that fatal ehrlichiosis could be a multistep process, where TNF-α is not solely responsible for mortality.
Infection and Immunity | 2006
Heather L. Stevenson; Jeffrey M. Jordan; Ziad Peerwani; Hui Qun Wang; David H. Walker; Nahed Ismail
ABSTRACT Immune responses against monocytotropic ehrlichiosis during infection with a strain of Ehrlichia from Ixodes ovatus (IOE) were evaluated using a model that closely reproduces the pathology and immunity associated with tick-transmitted human monocytotropic ehrlichiosis. C57BL/6 mice were inoculated intradermally or intraperitoneally with high-dose highly virulent IOE or intraperitoneally with mildly virulent Ehrlichia muris. Intradermal (i.d.) infection with IOE established mild, self-limited disease associated with minimal hepatic apoptosis, and all mice survived past 30 days. Intraperitoneal (i.p.) infection with IOE resulted in acute, severe toxic shock-like syndrome and severe multifocal hepatic apoptosis and necrosis, and all mice succumbed to disease. Compared to i.p. infection with IOE, intradermally infected mice had a 100- to 1,000-fold lower bacterial load in the spleen with limited dissemination. Compared to mice infected intraperitoneally with IOE, i.d. infection stimulated a stronger protective type-1 cell-mediated response on day 7 of infection, characterized by increased percentages of both CD4+ and CD8+ splenic T cells, generation of a greater number of IOE-specific, gamma interferon-producing CD4+ Th1 cells, and higher levels of tumor necrosis factor (TNF-α) in the spleen but lower concentrations of serum TNF-α and interleukin-10. These data suggest that under the conditions of natural route of challenge (i.e., i.d. inoculation), the immune response has the capacity to confer complete protection against monocytotropic ehrlichiosis, which is associated with a strong cell-mediated type-1 response and decreased systemic production of pro- and anti-inflammatory cytokines.
Journal of Medical Entomology | 2005
Heather L. Stevenson; Marcelo B. Labruna; John A. Montenieri; Michael Y. Kosoy; Kenneth L. Gage; David H. Walker
Abstract The flea and rodent samples studied in this project were collected from field study sites in New Mexico from winter 1998 to spring 2001. During this period, 155 small rodents (14 different species) were live-trapped and combed for the presence of fleas. A total of 253 fleas were collected, comprising 21 species. Two of the 253 fleas collected were polymerase chain reaction (PCR) positive for the Rickettsia 17-kDa protein gene. These two fleas were both Anomiopsyllus nudata Baker, each collected from an individual Neotoma albigula Hartley, on two occasions. Individual fleas positive for the Rickettsia 17-kDa protein gene were then tested with primers targeting the rickettsial genes for citrate synthase (gltA) and two major outer membrane proteins (ompA and ompB). The nucleotide sequences of the PCR products of these two fleas were identical to each other and were 100% (394/394), 100% (1150/1150), 99.8% (469/470), and 99.3% (818/824) similar to the corresponding sequences of the 17-kDa, gltA, ompA, and ompB genes of Rickettsia felis, respectively. Flea homogenates of individual PCR-positive fleas were inoculated into shell vials seeded with Vero cells, and the Giménez stain technique was used to demonstrate the presence of Rickettsia-like organisms in detached cells found in aspirated medium 19 d after inoculation. These cells were harvested and tested by PCR, targeting portions of the 17-kDa and gltA genes, resulting in products 100% identical to R. felis. This work comprises the first report of R. felis detection in a flea species (A. nudata) endemic to the New World.
Infection and Immunity | 2008
Heather L. Stevenson; Emily Crossley; Nagaraja R. Thirumalapura; David H. Walker; Nahed Ismail
ABSTRACT CD1d-restricted NKT cells are key players in host defense against various microbial infections. Using a murine model of fatal ehrlichiosis, we investigated the role of CD1d-restricted NKT cells in induction of toxic shock-like syndrome caused by gram-negative, lipopolysaccharide-lacking, monocytotropic Ehrlichia. Our previous studies showed that intraperitoneal infection of wild-type (WT) mice with virulent Ehrlichia (Ixodes ovatus Ehrlichia [IOE]) results in CD8+ T-cell-mediated fatal toxic shock-like syndrome marked by apoptosis of CD4+ T cells, a weak CD4+ Th1 response, overproduction of tumor necrosis factor alpha and interleukin-10, and severe liver injury. Although CD1d−/− mice succumbed to high-dose IOE infection similar to WT mice, they did not develop signs of toxic shock, as shown by elevated bacterial burdens, low serum levels of tumor necrosis factor, normal serum levels of liver enzymes, and the presence of few apoptotic hepatic cells. An absence of NKT cells restored the percentages and absolute numbers of CD4+ and CD8+ T cells and CD11b+ cells in the spleen compared to WT mice and was also associated with decreased expression of Fas on splenic CD4+ lymphocytes and granzyme B in hepatic CD8+ lymphocytes. Furthermore, our data show that NKT cells promote apoptosis of macrophages and up-regulation of the costimulatory molecule CD40 on antigen-presenting cells, including dendritic cells, B cells, and macrophages, which may contribute to the induction of pathogenic T-cell responses. In conclusion, our data suggest that NKT cells mediate Ehrlichia-induced T-cell-mediated toxic shock-like syndrome, most likely via cognate and noncognate interactions with antigen-presenting cells.
Infection and Immunity | 2007
Nahed Ismail; Emily Crossley; Heather L. Stevenson; David H. Walker
ABSTRACT Infection with gram-negative monocytotropic Ehrlichia strains results in a fatal toxic shock-like syndrome characterized by a decreased number of Ehrlichia-specific CD4+ Th1 cells, the expansion of tumor necrosis factor alpha (TNF-α)-producing CD8+ T cells, and the systemic overproduction of interleukin-10 (IL-10) and TNF-α. Here, we investigated the role of CD4+ and CD8+ T cells in immunity to Ehrlichia and the pathogenesis of fatal ehrlichiosis caused by infection with low- and high-dose (103 and 105 bacterial genomes/mouse, respectively) ehrlichial inocula. The CD4+ T-cell-deficient mice showed exacerbated susceptibility to a lethal high- or low-dose infection and harbored higher bacterial numbers than did wild-type (WT) mice. Interestingly, the CD8+ T-cell-deficient mice were resistant to a low dose but succumbed to a high dose of Ehrlichia. The absence of CD8+ T cells abrogated TNF-α and IL-10 production, reduced tissue injury and bacterial burden, restored splenic CD4+ T-cell numbers, and increased the frequency of Ehrlichia-specific CD4+ Th1 cells in comparison to infected WT mice. Although fatal disease is perforin independent, our data suggested that perforin played a critical role in controlling bacterial burden and mediating liver injury. Similar to WT mice, mortality of infected perforin-deficient mice was associated with CD4+ T-cell apoptosis and a high serum concentration of IL-10. Depletion of IL-10 restored the number of CD4+ and CD8+ T cells in infected WT mice. Our data demonstrate a novel mechanism of immunopathology in which CD8+ T cells mediate Ehrlichia-induced toxic shock, which is associated with IL-10 overproduction and CD4+ T-cell apoptosis.
American Journal of Pathology | 2010
Heather L. Stevenson; Mark Estes; Nagaraja R. Thirumalapura; David H. Walker; Nahed Ismail
Human monocytotropic ehrlichiosis is caused by Ehrlichia chaffeensis, a Gram-negative bacterium lacking lipopolysaccharide. We have shown that fatal murine ehrlichiosis is associated with CD8(+)T cell-mediated tissue damage, tumor necrosis factor-alpha, and interleukin (IL)-10 overproduction, and CD4(+)Th1 hyporesponsiveness. In this study, we examined the relative contributions of natural killer (NK) and NKT cells in Ehrlichia-induced toxic shock. Lethal ehrlichial infection in wild-type mice induced a decline in NKT cell numbers, and late expansion and migration of activated NK cells to the liver, a main infection site that coincided with development of hepatic injury. The spatial and temporal changes in NK and NKT cells in lethally infected mice correlated with higher NK cell cytotoxic activity, higher expression of cytotoxic molecules such as granzyme B, higher production of interferon-gamma and tumor necrosis factor-alpha, increased hepatic infiltration with CD8alphaCD11c(+) dendritic cells and CD8(+)T cells, decreased splenic CD4(+)T cells, increased serum concentrations of IL-12p40, IL-18, RANTES, and monocyte chemotactic protein-1, and elevated production of IL-18 by liver mononuclear cells compared with nonlethally infected mice. Depletion of NK cells prevented development of severe liver injury, decreased serum levels of interferon-gamma, tumor necrosis factor-alpha, and IL-10, and enhanced bacterial elimination. These data indicate that NK cells promote immunopathology and defective anti-ehrlichial immunity, possibly via decreasing the protective immune response mediated by interferon-gamma producing CD4(+)Th1 and NKT cells.
American Journal of Pathology | 2015
Qin Yang; Heather L. Stevenson; Melanie J. Scott; Nahed Ismail
Ehrlichia species are intracellular bacteria that cause fatal ehrlichiosis, mimicking toxic shock syndrome in humans and mice. Virulent ehrlichiae induce inflammasome activation leading to caspase-1 cleavage and IL-18 secretion, which contribute to development of fatal ehrlichiosis. We show that fatal infection triggers expression of inflammasome components, activates caspase-1 and caspase-11, and induces host-cell death and secretion of IL-1β, IL-1α, and type I interferon (IFN-I). Wild-type and Casp1(-/-) mice were highly susceptible to fatal ehrlichiosis, had overwhelming infection, and developed extensive tissue injury. Nlrp3(-/-) mice effectively cleared ehrlichiae, but displayed acute mortality and developed liver injury similar to wild-type mice. By contrast, Ifnar1(-/-) mice were highly resistant to fatal disease and had lower bacterial burden, attenuated pathology, and prolonged survival. Ifnar1(-/-) mice also had improved protective immune responses mediated by IFN-γ and CD4(+) Th1 and natural killer T cells, with lower IL-10 secretion by T cells. Importantly, heightened resistance of Ifnar1(-/-) mice correlated with improved autophagosome processing, and attenuated noncanonical inflammasome activation indicated by decreased activation of caspase-11 and decreased IL-1β, compared with other groups. Our findings demonstrate that IFN-I signaling promotes host susceptibility to fatal ehrlichiosis, because it mediates ehrlichia-induced immunopathology and supports bacterial replication, perhaps via activation of noncanonical inflammasomes, reduced autophagy, and suppression of protective CD4(+) T cells and natural killer T-cell responses against ehrlichiae.