Heather L. Throop
Arizona State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heather L. Throop.
Ecosystems | 2004
Heather L. Throop; Manuel T. Lerdau
The deposition of anthropogenically fixed nitrogen (N) from the atmosphere onto land and plant surfaces has strong influences on terrestrial ecosystem processes. Although recent research has expanded our understanding of how N deposition affects ecosystems directly, less attention has been directed toward the investigation of how N deposition may affect ecosystems indirectly by modifying interactions among organisms. Empirical evidence suggests that there are several mechanisms by which N deposition may affect interactions between plants and insect herbivores. The most likely mechanisms are deposition-induced shifts in the quality and availability of host plant tissues. We discuss the effects of N deposition on host plant chemistry, production, and phenology, and we review the evidence for the effects of N deposition on insect herbivores at the individual, population, and community levels. In general, N deposition has positive effects on individual insect performance, probably due to deposition-induced improvements in host plant chemistry. These improvements include increased N and decreased carbon-based defensive compound concentrations. The evidence to date suggests that N deposition may also have a positive effect on insect populations. These effects may have considerable ecological, as well as economic consequences if the rates of herbivory on economically important timber species continue to increase. Deposition-induced changes in plant–herbivore relationships may affect community and ecosystem processes. However, we predict that the larger-scale consequences of interactions between N deposition and herbivory will vary based on site-specific factors. In addition, interactions between N deposition and other global-scale changes may lead to nonadditive effects on patterns of herbivory.
Ecological Applications | 2007
Heather L. Throop; Steven R. Archer
Encroachment of woody plants into grasslands, and subsequent brush management, are among the most prominent changes to occur in arid and semiarid systems over the past century. Despite the resulting widespread changes in landcover, substantial uncertainty about the biogeochemical impacts of woody proliferation and brush management exists. We explored the role of shrub encroachment and brush management on leaf litter decomposition in a semidesert grassland where velvet mesquite (Prosopis velutina) abundance has increased over the past 100 years. This change in physiognomy may affect decomposition directly, through altered litter quality or quantity, and indirectly through altered canopy structure. To assess the direct and indirect impacts of shrubs on decomposition, we quantified changes in mass, nitrogen, and carbon in litterbags deployed under mesquite canopies and in intercanopy zones. Litterbags contained foliage from mesquite and Lehmann lovegrass (Eragrostis lehmanniana), a widespread, nonnative grass in southern Arizona. To explore short- and long-term influences of brush management on the initial stages of decomposition, litterbags were deployed at sites where mesquite canopies were removed three weeks, 45 years, or 70 years prior to study initiation. Mesquite litter decomposed more rapidly than lovegrass, but negative indirect influences of mesquite canopies counteracted positive direct effects. Decomposition was positively correlated with soil infiltration into litterbags, which varied with microsite placement, and was lowest under canopies. Low under-canopy decomposition was ostensibly due to decreased soil movement associated with high under-canopy herbaceous biomass. Decomposition rates where canopies were removed three weeks prior to study initiation were comparable to those beneath intact canopies, suggesting that decomposition was driven by mesquite legacy effects on herbaceous cover-soil movement linkages. Decomposition rates where shrubs were removed 45 and 70 years prior to study initiation were comparable to intercanopy rates, suggesting that legacy effects persist less than 45 years. Accurate decomposition modeling has proved challenging in arid and semiarid systems but is critical to understanding biogeochemical responses to woody encroachment and brush management. Predicting brush-management effects on decomposition will require information on shrub-grass interactions and herbaceous biomass influences on soil movement at decadal timescales. Inclusion of microsite factors controlling soil accumulation on litter would improve the predictive capability of decomposition models.
Frontiers in Ecology and the Environment | 2015
Gregory S. Okin; Mariano Moreno-de las Heras; Patricia M. Saco; Heather L. Throop; Enrique R. Vivoni; Anthony J. Parsons; John Wainwright; Debra P. C. Peters
Dryland ecosystems are often characterized by patchy vegetation and exposed soil. This structure enhances transport of soil resources and seeds through the landscape (primarily by wind and water, but also by animals), thus emphasizing the importance of connectivity – given its relation to the flow of these materials – as a component of dryland ecosystem function. We argue that, as with the fertile-islands conceptual model before it, the concept of connectivity explains many phenomena observed in drylands. Further, it serves as an organizing principle to understand dryland structure and function at scales from individual plants to entire landscapes. The concept of connectivity also helps to organize thinking about interactions among processes occurring at different scales, such as when processes at one scale are overridden by processes at another. In these cases, we suggest that state change occurs when fine-scale processes fail to adjust to new external conditions through resource use or redistribution at the finer scale. The connectivity framework has practical implications for land management, especially with respect to decision making concerning the scale and location of agricultural production or habitat restoration in the worlds drylands.
Journal of Geophysical Research | 2005
Jennifer L. Funk; Clive G. Jones; Dennis W. Gray; Heather L. Throop; Laura A. Hyatt; Manuel T. Lerdau
[1] Isoprene is the dominant volatile organic compound produced in many forest systems. Uncertainty in estimates of leaf level isoprene emission rate stems from an insufficient understanding of the patterns and processes controlling isoprene emission capacity in plant leaves. Previous studies suggest that variation in isoprene emission capacity is substantial; however, it is not known at what scale emission capacity is the most variable. Identifying the sources of variation in emission capacity has implications for conducting measurements and for model development, which will ultimately improve emission estimates and models of tropospheric chemistry. In addition, understanding the sources of variation will help to develop a comprehensive understanding of the physiological controls over isoprene emission. This study applied a variance partitioning approach to identify the major sources of variation in isoprene emission capacity from two populations of northern red oak (Quercus rubra) over three growing seasons. Specifically, we evaluated variation due to climate, populations, trees, branches, leaves, seasons, and years. Overall, the dominant source of variation was the effect of a moderate drought event. In the years without drought events, variation among individual trees (intraspecific) explained approximately 60% of the total variance. Within the midseason, isoprene emission capacity of sun leaves varied by a factor of 2 among trees. During the third year a moderate 20-day drought event caused isoprene emission capacity to decrease fourfold, and the relative importance of intraspecific variation was reduced to 24% of total variance. Overall, ambient temperature, light, and a drought index were poor predictors of isoprene emission capacity over a 0 to 14-day period across growing seasons. The drought event captured in this study emphasizes the need to incorporate environmental influences into leaf level emission models.
Archive | 2009
Heather L. Throop; Steven R. Archer
Decomposition of organic matter is a crucial component of biogeochemical cycles that strongly controls nutrient availability, productivity, and community composition. The factors controlling decomposition of litter in arid and semi-arid systems remain poorly understood, with an unresolved disconnect between meas- ured and modeled decay rates. In contrast, decay rates in mesic systems are gener- ally quite successfully predicted by models driven by climatic variables. Here, we explore the reasons for this disconnect by reviewing literature on the biotic and abiotic controls over dryland decomposition. Recent research on decomposition in drylands suggests that several key drivers of dryland decomposition have been historically overlooked and not included in models. In particular, UV photodegra- dation and soil transport processes, both a function of vegetation structure, may strongly influence dryland decomposition dynamics. We propose an expanded framework for studying dryland decay that explicitly addresses vegetation structure and its influence on decomposition. Spatial heterogeneity of vegetation in dryland systems necessitates considering how the spatial and temporal context of vegetation influences soil transport patterns and UV photodegradation, both of which may in turn affect abiotic and biotic decomposition processes.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Edith B. Allen; William D. Bowman; Christopher M. Clark; Jayne Belnap; Matthew L. Brooks; Brian S. Cade; Scott L. Collins; Linda H. Geiser; Frank S. Gilliam; Sarah E. Jovan; Linda H. Pardo; Bethany K. Schulz; Carly J. Stevens; Katharine N. Suding; Heather L. Throop; Donald M. Waller
Significance Human activities have elevated nitrogen (N) deposition and there is evidence that deposition impacts species diversity, but spatially extensive and context-specific estimates of N loads at which species losses begin remain elusive. Across a wide range of climates, soil conditions, and vegetation types in the United States, we found that 24% of >15,000 sites were susceptible to N deposition-induced species loss. Grasslands, shrublands, and woodlands were susceptible to species losses at lower loads of N deposition than forests, and susceptibility to species losses increased in acidic soils. These findings are pertinent to the protection of biodiversity and human welfare and should be considered when establishing air quality standards. Atmospheric nitrogen (N) deposition has been shown to decrease plant species richness along regional deposition gradients in Europe and in experimental manipulations. However, the general response of species richness to N deposition across different vegetation types, soil conditions, and climates remains largely unknown even though responses may be contingent on these environmental factors. We assessed the effect of N deposition on herbaceous richness for 15,136 forest, woodland, shrubland, and grassland sites across the continental United States, to address how edaphic and climatic conditions altered vulnerability to this stressor. In our dataset, with N deposition ranging from 1 to 19 kg N⋅ha−1⋅y−1, we found a unimodal relationship; richness increased at low deposition levels and decreased above 8.7 and 13.4 kg N⋅ha−1⋅y−1 in open and closed-canopy vegetation, respectively. N deposition exceeded critical loads for loss of plant species richness in 24% of 15,136 sites examined nationwide. There were negative relationships between species richness and N deposition in 36% of 44 community gradients. Vulnerability to N deposition was consistently higher in more acidic soils whereas the moderating roles of temperature and precipitation varied across scales. We demonstrate here that negative relationships between N deposition and species richness are common, albeit not universal, and that fine-scale processes can moderate vegetation responses to N deposition. Our results highlight the importance of contingent factors when estimating ecosystem vulnerability to N deposition and suggest that N deposition is affecting species richness in forested and nonforested systems across much of the continental United States.
Ecological Applications | 1999
Manuel T. Lerdau; Heather L. Throop
Isoprene emission by plants is the principal source of photochemically active reduced compounds in the troposphere, and tropical forest ecosystems are the largest single source of isoprene. The oxidation of isoprene plays a major role in controlling the redox potential of the troposphere and the dynamics of carbon monoxide, ozone, and methane. We used a combination of infrared gas analysis and gas chromatography/photoionization detection in the first study of isoprene emission and photosynthesis from canopy leaves in a tropical wet forest under controlled light and temperature conditions. Twelve of the 33 tree species surveyed produced isoprene. This is a similar proportion of emitting species to that found in other species-rich ecosystems surveyed to date. Canopy leaves did not show temperature saturation in their isoprene-emission responses, although isoprene emission saturated at high light intensities for some species. Photosynthesis rates saturated at high light intensities and declined at high tempe...
Frontiers in Ecology and the Environment | 2015
Curtis Monger; Osvaldo E. Sala; Michael C. Duniway; Haim Goldfus; Isaac A. Meir; Rosa M Poch; Heather L. Throop; Enrique R. Vivoni
A legacy effect refers to the impacts that previous conditions have on current processes or properties. Legacies have been recognized by many disciplines, from physiology and ecology to anthropology and geology. Within the context of climatic change, ecological legacies in drylands (eg vegetative patterns) result from feedbacks between biotic, soil, and geomorphic processes that operate at multiple spatial and temporal scales. Legacy effects depend on (1) the magnitude of the original phenomenon, (2) the time since the occurrence of the phenomenon, and (3) the sensitivity of the ecological–soil–geomorphic system to change. Here we present a conceptual framework for legacy effects at short-term (days to months), medium-term (years to decades), and long-term (centuries to millennia) timescales, which reveals the ubiquity of such effects in drylands across research disciplines.
Ecosystems | 2013
Daniel B. Hewins; Steven R. Archer; Gregory S. Okin; Rebecca L. McCulley; Heather L. Throop
Decomposition models typically under-predict decomposition relative to observed rates in drylands. This discrepancy indicates a significant gap in our mechanistic understanding of carbon and nutrient cycling in these systems. Recent research suggests that certain drivers of decomposition that are often not explicitly incorporated into models (for example, photodegradation and soil–litter mixing; SLM) may be important in drylands, and their exclusion may, in part, be responsible for model under-predictions. To assess the role of SLM, litterbags were deployed in the Chihuahuan Desert and interrelationships between vegetation structure, SLM, and rates of decomposition were quantified. Vegetation structure was manipulated to simulate losses of grass cover from livestock grazing and shrub encroachment. We hypothesized that reductions in grass cover would promote SLM and accelerate mass loss by improving conditions for microbial decomposition. Litter mass decreased exponentially, with the greatest losses occurring in concert with summer monsoons. There were no differences in decay constants among grass cover treatments. A significant, positive relationship between mass loss and SLM was observed, but contrary to expectations SLM was independent of grass cover. This suggests that processes operating at finer spatial scales than those in our grass removal treatments were influencing SLM. Shifts in litter lipid composition suggest increased bacterial contribution to decomposition through time. SLM, which is seldom included as a variable controlling decomposition in statistical or mechanistic models, was a strong driver of decomposition. Results are discussed in the context of other known drivers of decomposition in drylands (for example, UV radiation and climate) and more mesic systems.
Oecologia | 2010
Jennifer L. Funk; Heather L. Throop
Invasive species may be released from consumption by their native herbivores in novel habitats and thereby experience higher fitness relative to native species. However, few studies have examined release from herbivory as a mechanism of invasion in oceanic island systems, which have experienced particularly high loss of native species due to the invasion of non-native animal and plant species. We surveyed putative defensive traits and leaf damage rates in 19 pairs of taxonomically related invasive and native species in Hawaii, representing a broad taxonomic diversity. Leaf damage by insects and pathogens was monitored in both wet and dry seasons. We found that native species had higher leaf damage rates than invasive species, but only during the dry season. However, damage rates across native and invasive species averaged only 2% of leaf area. Native species generally displayed high levels of structural defense (leaf toughness and leaf thickness, but not leaf trichome density) while native and invasive species displayed similar levels of chemical defenses (total phenolics). A defense index, which integrated all putative defense traits, was significantly higher for native species, suggesting that native species may allocate fewer resources to growth and reproduction than do invasive species. Thus, our data support the idea that invasive species allocate fewer resources to defense traits, allowing them to outperform native species through increased growth and reproduction. While strong impacts of herbivores on invasion are not supported by the low damage rates we observed on mature plants, population-level studies that monitor how herbivores influence recruitment, mortality, and competitive outcomes are needed to accurately address how herbivores influence invasion in Hawaii.