Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heather Parker is active.

Publication


Featured researches published by Heather Parker.


Journal of Leukocyte Biology | 2012

Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus

Heather Parker; M. Dragunow; Mark B. Hampton; Anthony J. Kettle; Christine C. Winterbourn

Release of NETs by neutrophils is linked with immune protection and host damage. A variety of stimuli promotes NET formation. However, findings from different laboratories often vary, and it is possible that more than one mechanism of NET formation exists. NET formation induced by PMA has been shown to require NADPH oxidase activity, and there is evidence that the granule enzyme MPO is also involved. However, requirements for NADPH oxidase or MPO with other stimuli are less well established. We investigated the role of oxidants in NET formation by human neutrophils induced with PMA, several bacterial genera, and the calcium ionophore ionomycin. With the use of inhibitors of the NADPH oxidase and MPO, oxidant scavengers, and cells from a MPO‐deficient individual, we observed that requirements for oxidant generation depend on the stimulus. NADPH oxidase activity was required with PMA and bacterial stimulation but not with ionomycin. Whereas MPO was required for efficient NET formation with PMA, incubation with bacteria induced NETs independently of MPO activity. Although the specific mechanisms whereby oxidants participate in NET formation remain to be clarified, it is possible that other stimuli that mobilize calcium act like ionomycin via an oxidant‐independent mechanism, and it cannot be inferred from results with PMA that MPO is required with more physiological stimuli.


Journal of Leukocyte Biology | 2012

Myeloperoxidase associated with neutrophil extracellular traps is active and mediates bacterial killing in the presence of hydrogen peroxide

Heather Parker; Amelia M. Albrett; Anthony J. Kettle; Christine C. Winterbourn

A variety of inflammatory stimuli induces NETs. These structures consist of a network of chromatin strands associated with predominately granule proteins, including MPO. NETs exhibit antimicrobial activity, which is proposed to augment the more‐established mechanism of phagosomal killing. They may also be detrimental to the host in situations such as chronic inflammation or severe sepsis. The objective of this study was to establish whether MPO associated with NETs is active and able to kill bacteria. Neutrophils were stimulated with PMA to release NETs. Peroxidase activity measurements were performed and showed that enzymatically active MPO was released from the neutrophils, 2–4 h after stimulation, concomitant with NET formation. Approximately 30% of the total cellular MPO was released, with the majority bound to the NETs. The bound enzyme retained its activity. Staphylococcus aureus were not killed when added to preformed NETs under our assay conditions. However, addition of H2O2 to the bacteria in the presence of NETs resulted in MPO‐dependent killing, which was observed with NETs in situ and with NETs when they were removed from the neutrophils by limited DNase digestion. Our results show that the enzymatic activity of MPO on NETs could contribute to antimicrobial activity or tissue injury when NETs are released from neutrophils at sites of infection or inflammation.


Infection and Immunity | 2010

Uptake of Helicobacter pylori Outer Membrane Vesicles by Gastric Epithelial Cells

Heather Parker; Kenny Chitcholtan; Mark B. Hampton; Jacqueline I. Keenan

ABSTRACT Helicobacter pylori bacteria colonize the human stomach where they stimulate a persistent inflammatory response. H. pylori is considered noninvasive; however, lipopolysaccharide (LPS)-enriched outer membrane vesicles (OMV), continuously shed from the surface of this bacterium, are observed within gastric epithelial cells. The mechanism of vesicle uptake is poorly understood, and this study was undertaken to examine the roles of bacterial VacA cytotoxin and LPS in OMV binding and cholesterol and clathrin-mediated endocytosis in vesicle uptake by gastric epithelial cells. OMV association was examined using a fluorescent membrane dye to label OMV, and a comparison was made between the associations of vesicles from a VacA+ strain and OMV from a VacA− isogenic mutant strain. Within 20 min, essentially all associated OMV were intracellular, and vesicle binding appeared to be facilitated by the presence of VacA cytotoxin. Uptake of vesicles from the VacA+ strain was inhibited by H. pylori LPS (58% inhibition with 50 μg/ml LPS), while uptake of OMV from the VacA− mutant strain was less affected (25% inhibition with 50 μg/ml LPS). Vesicle uptake did not require cholesterol. However, uptake of OMV from the VacA− mutant strain was inhibited by a reduction in clathrin-mediated endocytosis (42% with 15 μg/ml chlorpromazine), while uptake of OMV from the VacA+ strain was less affected (25% inhibition with 15 μg/ml chlorpromazine). We conclude that VacA toxin enhances the association of H. pylori OMV with cells and that the presence of the toxin may allow vesicles to exploit more than one pathway of internalization.


Frontiers in Immunology | 2013

Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps

Heather Parker; Christine C. Winterbourn

Neutrophils release extracellular traps (NETs) in response to a variety of inflammatory stimuli. These structures are composed of a network of chromatin strands associated with a variety of neutrophil-derived proteins including the enzyme myeloperoxidase (MPO). Studies into the mechanisms leading to the formation of NETs indicate a complex process that differs according to the stimulus. With some stimuli an active nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is required. However, assigning specific reactive oxygen species involved downstream of the oxidase is a difficult task and definitive proof for any single oxidant is still lacking. Pharmacological inhibition of MPO and the use of MPO-deficient neutrophils indicate active MPO is required with phorbol myristate acetate as a stimulus but not necessarily with bacteria. Reactive oxidants and MPO may also play a role in NET-mediated microbial killing. MPO is present on NETs and maintains activity at this site. Therefore, MPO has the potential to generate reactive oxidants in close proximity to trapped microorganisms and thus effect microbial killing. This brief review discusses current evidence for the involvement of reactive oxidants and MPO in NET formation and their potential contribution to NET antimicrobial activity.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Design of ultrasensitive probes for human neutrophil elastase through hybrid combinatorial substrate library profiling

Paulina Kasperkiewicz; Marcin Poreba; Scott J. Snipas; Heather Parker; Christine C. Winterbourn; Guy S. Salvesen; Marcin Drag

Significance The exploration of protease substrate specificity is generally restricted to naturally occurring amino acids, limiting the degree of conformational space that can be surveyed. We substantially enhanced this by incorporating 102 unnatural amino acids to explore the S1–S4 pockets of human neutrophil elastase. This approach provides hybrid natural and unnatural amino acid sequences, and thus we termed it the Hybrid Combinatorial Substrate Library. Using this approach, we have designed an extremely active substrate of NE and subsequently converted it into an ultrasensitive activity-based probe for imaging active elastase during the process of neutrophil extracellular trap formation. Our study could have a substantial effect on the design of substrates, inhibitors, and probes for any endopeptidase. The exploration of protease substrate specificity is generally restricted to naturally occurring amino acids, limiting the degree of conformational space that can be surveyed. We substantially enhanced this by incorporating 102 unnatural amino acids to explore the S1–S4 pockets of human neutrophil elastase. This approach provides hybrid natural and unnatural amino acid sequences, and thus we termed it the Hybrid Combinatorial Substrate Library. Library results were validated by the synthesis of individual tetrapeptide substrates, with the optimal substrate demonstrating more than three orders of magnitude higher catalytic efficiency than commonly used substrates of elastase. This optimal substrate was converted to an activity-based probe that demonstrated high selectivity and revealed the specific presence of active elastase during the process of neutrophil extracellular trap formation. We propose that this approach can be successfully used for any type of endopeptidase to deliver high activity and selectivity in substrates and probes.


Microbes and Infection | 2012

Composition and function of Helicobacter pylori outer membrane vesicles.

Heather Parker; Jacqueline I. Keenan

The gastric pathogen Helicobacter pylori sheds outer membrane vesicles (OMV) that possess many of the surface elements of the bacterium. Here we review current knowledge on the composition of H. pylori OMV and discuss evidence for their potential roles in bacterial survival and pathogenesis.


Journal of Leukocyte Biology | 2016

Neutrophil extracellular trap formation is elicited in response to cold physical plasma

Sander Bekeschus; Christine C. Winterbourn; Julia Kolata; Kai Masur; Sybille Hasse; Barbara M. Bröker; Heather Parker

Cold physical plasma is an ionized gas with a multitude of components, including hydrogen peroxide and other reactive oxygen and nitrogen species. Recent studies suggest that exposure of wounds to cold plasma may accelerate healing. Upon wounding, neutrophils are the first line of defense against invading microorganisms but have also been identified to play a role in delayed healing. In this study, we examined how plasma treatment affects the functions of peripheral blood neutrophils. Plasma treatment induced oxidative stress, as assessed by the oxidation of intracellular fluorescent redox probes; reduced metabolic activity; but did not induce early apoptosis. Neutrophil oxidative burst was only modestly affected after plasma treatment, and the killing of Pseudomonas aeruginosa and Staphylococcus aureus was not significantly affected. Intriguingly, we found that plasma induced profound extracellular trap formation. This was inhibited by the presence of catalase during plasma treatment but was not replicated by adding an equivalent concentration of hydrogen peroxide. Plasma‐induced neutrophil extracellular trap formation was not dependent on the activity of myeloperoxidase or NADPH oxidase 2 but seemed to involve short‐lived molecules. The amount of DNA release and the time course after plasma treatment were similar to that with the common neutrophil extracellular trap inducer PMA. After neutrophil extracellular traps had formed, concentrations of IL‐8 were also significantly increased in supernatants of plasma‐treated neutrophils. Both neutrophil extracellular traps and IL‐8 release may aid antimicrobial activity and spur inflammation at the wound site. Whether this aids or exacerbates wound healing needs to be tested.


Journal of Biological Chemistry | 2014

Uric Acid and Thiocyanate as Competing Substrates of Lactoperoxidase

Antonia Seidel; Heather Parker; Rufus Turner; Nina Dickerhof; Irada Khalilova; Sigurd M. Wilbanks; Anthony J. Kettle; Guy N. L. Jameson

Background: Lactoperoxidase plays a key role in host defense by oxidizing thiocyanate to the bactericidal agent hypothiocyanite. Results: Urate is a good substrate for lactoperoxidase and competes with thiocyanate for oxidation in vitro. Conclusion: Urate is a likely physiological substrate for lactoperoxidase. Significance: Urate may influence the bactericidal activity of lactoperoxidase. The physiological function of urate is poorly understood. It may act as a danger signal, an antioxidant, or a substrate for heme peroxidases. Whether it reacts sufficiently rapidly with lactoperoxidase (LPO) to act as a physiological substrate remains unknown. LPO is a mammalian peroxidase that plays a key role in the innate immune defense by oxidizing thiocyanate to the bactericidal and fungicidal agent hypothiocyanite. We now demonstrate that urate is a good substrate for bovine LPO. Urate was oxidized by LPO to produce the electrophilic intermediates dehydrourate and 5-hydroxyisourate, which decayed to allantoin. In the presence of superoxide, high yields of hydroperoxides were formed by LPO and urate. Using stopped-flow spectroscopy, we determined rate constants for the reaction of urate with compound I (k1 = 1.1 × 107 m−1 s−1) and compound II (k2 = 8.5 × 103 m−1 s−1). During urate oxidation, LPO was diverted from its peroxidase cycle because hydrogen peroxide reacted with compound II to give compound III. At physiologically relevant concentrations, urate competed effectively with thiocyanate, the main substrate of LPO for oxidation, and inhibited production of hypothiocyanite. Similarly, hypothiocyanite-dependent killing of Pseudomonas aeruginosa was inhibited by urate. Allantoin was present in human saliva and associated with the concentration of LPO. When hydrogen peroxide was added to saliva, oxidation of urate was dependent on its concentration and peroxidase activity. Our findings establish urate as a likely physiological substrate for LPO that will influence host defense and give rise to reactive electrophilic metabolites.


Sensors and Actuators B-chemical | 2016

Impedance model of immune reaction leading to NETosis and comparison with in vitro measurements

Anna Schröter; Sebastian Wegner; Martin Bulst; Heather Parker; Angela Rösen-Wolff; Gerald Gerlach


Free Radical Biology and Medicine | 2016

Inhibition of Neutrophil Apoptosis and Initiation of an Autophagy-Like Process in Hypoxia and Effects on Neutrophil Function

Usha Rani Talla; Stephanie M. Bozonet; Heather Parker; Mark B. Hampton; Margreet C.M. Vissers

Collaboration


Dive into the Heather Parker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Rösen-Wolff

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Anna Schröter

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald Gerlach

Dresden University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge