Heather R. Conti
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heather R. Conti.
Journal of Experimental Medicine | 2009
Heather R. Conti; Fang Shen; Namrata Nayyar; Eileen Stocum; Jianing N. Sun; Matthew J. Lindemann; Allen W. Ho; Justine Hoda Hai; Jeffrey J. Yu; Ji Won Jung; Scott G. Filler; Patricia A. Masso-Welch; Mira Edgerton; Sarah L. Gaffen
The commensal fungus Candida albicans causes oropharyngeal candidiasis (OPC; thrush) in settings of immunodeficiency. Although disseminated, vaginal, and oral candidiasis are all caused by C. albicans species, host defense against C. albicans varies by anatomical location. T helper 1 (Th1) cells have long been implicated in defense against candidiasis, whereas the role of Th17 cells remains controversial. IL-17 mediates inflammatory pathology in a gastric model of mucosal candidiasis, but is host protective in disseminated disease. Here, we directly compared Th1 and Th17 function in a model of OPC. Th17-deficient (IL-23p19−/−) and IL-17R–deficient (IL-17RA−/−) mice experienced severe OPC, whereas Th1-deficient (IL-12p35−/−) mice showed low fungal burdens and no overt disease. Neutrophil recruitment was impaired in IL-23p19−/− and IL-17RA−/−, but not IL-12−/−, mice, and TCR-αβ cells were more important than TCR-γδ cells. Surprisingly, mice deficient in the Th17 cytokine IL-22 were only mildly susceptible to OPC, indicating that IL-17 rather than IL-22 is vital in defense against oral candidiasis. Gene profiling of oral mucosal tissue showed strong induction of Th17 signature genes, including CXC chemokines and β defensin-3. Saliva from Th17-deficient, but not Th1-deficient, mice exhibited reduced candidacidal activity. Thus, the Th17 lineage, acting largely through IL-17, confers the dominant response to oral candidiasis through neutrophils and antimicrobial factors.
Journal of Immunology | 2010
Allen W. Ho; Fang Shen; Heather R. Conti; Nayan Patel; Erin E. Childs; Alanna C. Peterson; Nydiaris Hernández-Santos; Jay K. Kolls; Lawrence P. Kane; Wenjun Ouyang; Sarah L. Gaffen
IL-17 mediates essential inflammatory responses in host defense and autoimmunity. The IL-17A–IL-17F signaling complex is composed of IL-17RA and IL-17RC, both of which are necessary for signal transduction. To date, the specific contribution of IL-17RC to downstream signaling remains poorly understood. To define the regions within the IL-17RC cytoplasmic tail required for signal transduction, we assayed signaling by a panel of IL-17RC deletion mutants. These findings reveal that IL-17RC inducibly associates with a specific glycosylated IL-17RA isoform, in a manner independent of the IL-17RC cytoplasmic tail. Using expression of the IL-17 target genes IL-6 and 24p3/lipocalin-2 as a readout, functional reconstitution of signaling in IL-17RC−/− fibroblasts required the SEF/IL-17R signaling domain (SEFIR), a conserved motif common to IL-17R family members. Unexpectedly, the IL-17RC SEFIR alone was not sufficient to reconstitute IL-17–dependent signaling. Rather, an additional sequence downstream of the SEFIR was also necessary. We further found that IL-17RC interacts directly with the adaptor/E3 ubiquitin ligase Act1, and that the functional IL-17RC isoforms containing the extended SEFIR region interact specifically with a phosphorylated isoform of Act1. Finally, we show that IL-17RC is required for in vivo IL-17–dependent responses during oral mucosal infections caused by the human commensal fungus Candida albicans. These results indicate that IL-17RC is vital for IL-17–dependent signaling both in vitro and in vivo. Insight into the mechanisms by which IL-17RC signals helps shed light on IL-17–dependent inflammatory responses and may ultimately provide an avenue for therapeutic intervention in IL-17–mediated diseases.
Journal of Experimental Medicine | 2014
Heather R. Conti; Alanna C. Peterson; Lucas Brane; Anna R. Huppler; Nydiaris Hernández-Santos; Natasha Whibley; Abhishek V. Garg; Michelle R. Simpson-Abelson; Gregory A. Gibson; Anna J. Mamo; Lisa C. Osborne; Shrinivas Bishu; Nico Ghilardi; Ulrich Siebenlist; Simon C. Watkins; David Artis; Mandy J. McGeachy; Sarah L. Gaffen
Conti et al. show that IL-17 is produced by tongue-resident populations of γδ T cells and nTh17 cells in response to oropharyngeal candidiasis in mice.
Journal of Immunology | 2015
Heather R. Conti; Sarah L. Gaffen
IL-17 (IL-17A) has emerged as a key mediator of protection against extracellular microbes, but this cytokine also drives pathology in various autoimmune diseases. Overwhelming data in both humans and mice reveal a clear and surprisingly specific role for IL-17 in protection against the fungus Candida albicans, a commensal microbe of the human oral cavity, gastrointestinal tract, and reproductive mucosa. The IL-17 pathway regulates antifungal immunity through upregulation of proinflammatory cytokines, including IL-6, neutrophil-recruiting chemokines (e.g., CXCL1 and CXCL5), and antimicrobial peptides (e.g., defensins), which act in concert to limit fungal overgrowth. This review focuses on diseases caused by C. albicans, the role of IL-17–mediated immunity in candidiasis, and the implications for clinical therapies for both autoimmune conditions and fungal infections.
Infection and Immunity | 2008
Jeffrey J. Yu; Matthew J. Ruddy; Heather R. Conti; Kanitsak Boonanantanasarn; Sarah L. Gaffen
ABSTRACT Interleukin-17 (IL-17) is a proinflammatory cytokine secreted by the newly described CD4+ Th17 subset, which is distinct from classic Th1 and Th2 lineages. IL-17 contributes to bone destruction in rheumatoid arthritis but is essential in host defense against pathogens that are susceptible to neutrophils. Periodontal disease (PD) is a chronic inflammatory condition initiated by anaerobic oral pathogens such as Porphyromonas gingivalis, and it is characterized by host-mediated alveolar bone destruction due primarily to the immune response. The role of IL-17 in PD is controversial. Whereas elevated IL-17 levels have been found in humans with severe PD, we recently reported that female C57BL/6J mice lacking the IL-17 receptor (IL-17RAKO) are significantly more susceptible to PD bone loss due to defects in the chemokine-neutrophil axis (J. J. Yu, M. J. Ruddy, G. C. Wong, C. Sfintescu, P. J. Baker, J. B. Smith, R. T. Evans, and S. L. Gaffen, Blood 109:3794-3802, 2007). Since different mouse strains exhibit differences in susceptibility to PD as well as Th1/Th2 cell skewing, we crossed the IL-17RA gene knockout onto the BALB/c background and observed a similar enhancement in alveolar bone loss following P. gingivalis infection. Unexpectedly, in both strains IL-17RAKO female mice were much more susceptible to PD bone loss than males. Moreover, female BALB/c-IL-17RAKO mice were defective in producing anti-P. gingivalis immunoglobulin G and the chemokines KC/Groα and MIP-2. In contrast, male mice produced normal levels of chemokines and anti-P. gingivalis antibodies, but they were defective in granulocyte colony-stimulating factor upregulation. This study demonstrates a gender-dependent effect of IL-17 signaling and indicates that gender differences should be taken into account in the preclinical and clinical safety testing of anti-IL-17 biologic therapies.
Journal of Immunology | 2014
Anna R. Huppler; Heather R. Conti; Nydiaris Hernández-Santos; Toni Darville; Partha S. Biswas; Sarah L. Gaffen
Oropharyngeal candidiasis (OPC), caused by the commensal fungus Candida albicans, is an opportunistic infection associated with infancy, AIDS, and IL-17–related primary immunodeficiencies. The Th17-associated cytokines IL-23 and IL-17 are crucial for immunity to OPC, but the mechanisms by which they mediate immunity are poorly defined. IL-17RA–deficient humans and mice are strongly susceptible to OPC, with reduced levels of CXC chemokines and concomitantly impaired neutrophil recruitment to the oral mucosa. Paradoxically, humans with isolated neutropenia are typically not susceptible to candidiasis. To determine whether immunity to OPC is mediated via neutrophil recruitment, mice lacking CXCR2 were subjected to OPC and were found to be highly susceptible, although there was no dissemination of fungi to peripheral organs. To assess whether the entire neutrophil response is IL-17 dependent, IL-17RA−/− and IL-23−/− mice were administered neutrophil-depleting Abs and subjected to OPC. These mice displayed increased oral fungal burdens compared with IL-17RA−/− or IL-23−/− mice alone, indicating that additional IL-17–independent signals contribute to the neutrophil response. WT mice treated with anti–Gr-1 Abs exhibited a robust infiltrate of CD11b+Ly-6GlowF4/80− cells to the oral mucosa but were nonetheless highly susceptible to OPC, indicating that this monocytic influx is insufficient for host defense. Surprisingly, Ly-6G Ab treatment did not induce the same strong susceptibility to OPC in WT mice. Thus, CXCR2+ and Gr-1+ neutrophils play a vital role in host defense against OPC. Moreover, defects in the IL-23/17 axis cause a potent but incomplete deficiency in the neutrophil response to oral candidiasis.
Journal of Biological Chemistry | 2011
Rohitashw Kumar; Sonia Chadha; Darpan Saraswat; Jashanjot Singh Bajwa; Rui A. Li; Heather R. Conti; Mira Edgerton
Background: Salivary histatin 5 (Hst 5) kills the fungal pathogen Candida albicans upon its internalization. Results: Hst 5 requires C. albicans polyamine transporters Dur3 and Dur31 for its uptake and toxicity. Conclusion: C. albicans Dur polyamine transporters recognize and internalize cationic peptides competitively with spermidine. Significance: Modification of Hsts based upon polyamine structure may improve targeting and fungicidal activity. Histatin 5 (Hst 5) is a salivary gland-secreted cationic peptide with potent fungicidal activity against Candida albicans. Hst 5 kills fungal cells following intracellular translocation, although its selective transport mechanism is unknown. C. albicans cells grown in the presence of polyamines were resistant to Hst 5 due to reduced intracellular uptake, suggesting that this cationic peptide may enter candidal cells through native yeast polyamine transporters. Based upon homology to known Saccharomyces cerevisiae polyamine permeases, we identified six C. albicans Dur polyamine transporter family members and propose a new nomenclature. Gene deletion mutants were constructed for C. albicans polyamine transporters Dur3, Dur31, Dur33, Dur34, and were tested for Hst 5 sensitivity and uptake of spermidine. We found spermidine uptake and Hst 5 mediated killing were decreased significantly in Δdur3, Δdur31, and Δdur3/Δdur31 strains; whereas a DUR3 overexpression strain increased Hst 5 sensitivity and higher spermidine uptake. Treatment of cells with a spermidine synthase inhibitor increased spermidine uptake and Hst 5 killing, whereas protonophores and cold treatment reduced spermidine uptake. Inhibition assays showed that Hst 5 is a competitive analog of spermidine for uptake into C. albicans cells, and that Hst 5 Ki values were increased by 80-fold in Δdur3/Δdur31 cells. Thus, Dur3p and Dur31p are preferential spermidine transporters used by Hst 5 for its entry into candidal cells. Understanding of polyamine transporter-mediated internalization of Hst 5 provides new insights into the uptake mechanism for C. albicans toxicity, and further suggests design for targeted fungal therapeutic agents.
Journal of Biological Chemistry | 2011
Rohitashw Kumar; Sonia Chadha; Darpan Saraswat; Jashanjot Singh Bajwa; Rui A. Li; Heather R. Conti; Mira Edgerton
Background: Salivary histatin 5 (Hst 5) kills the fungal pathogen Candida albicans upon its internalization. Results: Hst 5 requires C. albicans polyamine transporters Dur3 and Dur31 for its uptake and toxicity. Conclusion: C. albicans Dur polyamine transporters recognize and internalize cationic peptides competitively with spermidine. Significance: Modification of Hsts based upon polyamine structure may improve targeting and fungicidal activity. Histatin 5 (Hst 5) is a salivary gland-secreted cationic peptide with potent fungicidal activity against Candida albicans. Hst 5 kills fungal cells following intracellular translocation, although its selective transport mechanism is unknown. C. albicans cells grown in the presence of polyamines were resistant to Hst 5 due to reduced intracellular uptake, suggesting that this cationic peptide may enter candidal cells through native yeast polyamine transporters. Based upon homology to known Saccharomyces cerevisiae polyamine permeases, we identified six C. albicans Dur polyamine transporter family members and propose a new nomenclature. Gene deletion mutants were constructed for C. albicans polyamine transporters Dur3, Dur31, Dur33, Dur34, and were tested for Hst 5 sensitivity and uptake of spermidine. We found spermidine uptake and Hst 5 mediated killing were decreased significantly in Δdur3, Δdur31, and Δdur3/Δdur31 strains; whereas a DUR3 overexpression strain increased Hst 5 sensitivity and higher spermidine uptake. Treatment of cells with a spermidine synthase inhibitor increased spermidine uptake and Hst 5 killing, whereas protonophores and cold treatment reduced spermidine uptake. Inhibition assays showed that Hst 5 is a competitive analog of spermidine for uptake into C. albicans cells, and that Hst 5 Ki values were increased by 80-fold in Δdur3/Δdur31 cells. Thus, Dur3p and Dur31p are preferential spermidine transporters used by Hst 5 for its entry into candidal cells. Understanding of polyamine transporter-mediated internalization of Hst 5 provides new insights into the uptake mechanism for C. albicans toxicity, and further suggests design for targeted fungal therapeutic agents.
Infection and Immunity | 2014
Shrinivas Bishu; Nydiaris Hernández-Santos; Michelle R. Simpson-Abelson; Anna R. Huppler; Heather R. Conti; Nico Ghilardi; Anna J. Mamo; Sarah L. Gaffen
ABSTRACT Oropharyngeal candidiasis (OPC [thrush]) is an opportunistic infection caused by the commensal fungus Candida albicans. OPC is common in individuals with HIV/AIDS, infants, patients on chemotherapy, and individuals with congenital immune defects. Immunity to OPC is strongly dependent on the interleukin-23 (IL-23)/IL-17R axis, as mice and humans with defects in IL-17R signaling (IL17F, ACT1, IL-17RA) or in genes that direct Th17 differentiation (STAT3, STAT1, CARD9) are prone to mucocutaneous candidiasis. Conventional Th17 cells are induced in response to C. albicans infection via signals from C-type lectin receptors, which signal through the adaptor CARD9, leading to production of Th17-inducing cytokines such as IL-6, IL-1β, and IL-23. Recent data indicate that IL-17 can also be made by numerous innate cell subsets. These innate “type 17” cells resemble conventional Th17 cells, but they can be activated without need for prior antigen exposure. Because C. albicans is not a commensal organism in rodents and mice are thus naive to this fungus, we had the opportunity to assess the role of CARD9 in innate versus adaptive responses using an OPC infection model. As expected, CARD9−/− mice failed to mount an adaptive Th17 response following oral Candida infection. Surprisingly, however, CARD9−/− mice had preserved innate IL-17-dependent responses to Candida and were almost fully resistant to OPC. Thus, CARD9 is important primarily for adaptive immunity to C. albicans, whereas alternate recognition systems appear to be needed for effective innate responses.
PLOS ONE | 2015
Heather R. Conti; Natasha Whibley; Bianca M. Coleman; Abhishek V. Garg; Jillian R. Jaycox; Sarah L. Gaffen
Candida albicans is a commensal fungal microbe of the human orogastrointestinal tract and skin. C. albicans causes multiple forms of disease in immunocompromised patients, including oral, vaginal, dermal and disseminated candidiasis. The cytokine IL-17 (IL-17A) and its receptor subunits, IL-17RA and IL-17RC, are required for protection to most forms of candidiasis. The importance of the IL-17R pathway has been observed not only in knockout mouse models, but also in humans with rare genetic mutations that impact generation of Th17 cells or the IL-17 signaling pathway, including Hyper-IgE Syndrome (STAT3 or TYK2 mutations) or IL17RA or ACT1 gene deficiency. The IL-17 family of cytokines is a distinct subclass of cytokines with unique structural and signaling properties. IL-17A is the best-characterized member of the IL-17 family to date, but far less is known about other IL-17-related cytokines. In this study, we sought to determine the role of a related IL-17 cytokine, IL-17C, in protection against oral, dermal and disseminated forms of C. albicans infection. IL-17C signals through a heterodimeric receptor composed of the IL-17RA and IL-17RE subunits. We observed that IL-17C mRNA was induced following oral C. albicans infection. However, mice lacking IL-17C or IL-17RE cleared C. albicans infections in the oral mucosa, skin and bloodstream at rates similar to WT littermate controls. Moreover, these mice demonstrated similar gene transcription profiles and recovery kinetics as WT animals. These findings indicate that IL-17C and IL-17RE are dispensable for immunity to the forms of candidiasis evaluated, and illustrate a surprisingly limited specificity of the IL-17 family of cytokines with respect to systemic, oral and cutaneous Candida infections.