Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hector Barajas-Martinez is active.

Publication


Featured researches published by Hector Barajas-Martinez.


Heart Rhythm | 2010

Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death

Elena Burashnikov; Ryan Pfeiffer; Hector Barajas-Martinez; Eva Delpón; Dan Hu; Mayurika Desai; Martin Borggrefe; Michel Haïssaguerre; Ronald J. Kanter; Guido D. Pollevick; Alejandra Guerchicoff; Ruben Laiño; Mark Marieb; Koonlawee Nademanee; Gi-Byoung Nam; Roberto Robles; Rainer Schimpf; Dwight D. Stapleton; Sami Viskin; Stephen L. Winters; Christian Wolpert; Samuel Zimmern; Christian Veltmann; Charles Antzelevitch

BACKGROUND L-type calcium channel (LTCC) mutations have been associated with Brugada syndrome (BrS), short QT (SQT) syndrome, and Timothy syndrome (LQT8). Little is known about the extent to which LTCC mutations contribute to the J-wave syndromes associated with sudden cardiac death. OBJECTIVE The purpose of this study was to identify mutations in the α1, β2, and α2δ subunits of LTCC (Ca(v)1.2) among 205 probands diagnosed with BrS, idiopathic ventricular fibrillation (IVF), and early repolarization syndrome (ERS). CACNA1C, CACNB2b, and CACNA2D1 genes of 162 probands with BrS and BrS+SQT, 19 with IVF, and 24 with ERS were screened by direct sequencing. METHODS/RESULTS Overall, 23 distinct mutations were identified. A total of 12.3%, 5.2%, and 16% of BrS/BrS+SQT, IVF, and ERS probands displayed mutations in α1, β2, and α2δ subunits of LTCC, respectively. When rare polymorphisms were included, the yield increased to 17.9%, 21%, and 29.1% for BrS/BrS+SQT, IVF, and ERS probands, respectively. Functional expression of two CACNA1C mutations associated with BrS and BrS+SQT led to loss of function in calcium channel current. BrS probands displaying a normal QTc had additional variations known to prolong the QT interval. CONCLUSION The study results indicate that mutations in the LTCCs are detected in a high percentage of probands with J-wave syndromes associated with inherited cardiac arrhythmias, suggesting that genetic screening of Ca(v) genes may be a valuable diagnostic tool in identifying individuals at risk. These results are the first to identify CACNA2D1 as a novel BrS susceptibility gene and CACNA1C, CACNB2, and CACNA2D1 as possible novel ERS susceptibility genes.


Circulation-cardiovascular Genetics | 2009

A Mutation in the β3 Subunit of the Cardiac Sodium Channel Associated with Brugada ECG Phenotype

Dan Hu; Hector Barajas-Martinez; Elena Burashnikov; Michael Springer; Yuesheng Wu; András Varró; Ryan Pfeiffer; Tamara T. Koopmann; Jonathan M. Cordeiro; Alejandra Guerchicoff; Guido D. Pollevick; Charles Antzelevitch

Background—Brugada syndrome, characterized by ST-segment elevation in the right precordial ECG leads and the development of life-threatening ventricular arrhythmias, has been associated with mutations in 6 different genes. We identify and characterize a mutation in a new gene. Methods and Results—A 64-year-old white male displayed a type 1 ST-segment elevation in V1 and V2 during procainamide challenge. Polymerase chain reaction–based direct sequencing was performed using a candidate gene approach. A missense mutation (L10P) was detected in exon 1 of SCN3B, the β3 subunit of the cardiac sodium channel, but not in any other gene known to be associated with Brugada syndrome or in 296 controls. Wild-type (WT) and mutant genes were expressed in TSA201 cells and studied using whole-cell patch-clamp techniques. Coexpression of SCN5A/WT+SCN1B/WT+SCN3B/L10P resulted in an 82.6% decrease in peak sodium current density, accelerated inactivation, slowed reactivation, and a −9.6-mV shift of half-inactivation voltage compared with SCN5A/WT+SCN1B/WT+SCN3B/WT. Confocal microscopy revealed that SCN5A/WT channels tagged with green fluorescent protein are localized to the cell surface when coexpressed with WT SCN1B and SCN3B but remain trapped in intracellular organelles when coexpressed with SCN1B/WT and SCN3B/L10P. Western blot analysis confirmed the presence of NaVβ3 in human ventricular myocardium. Conclusions—Our results provide support for the hypothesis that mutations in SCN3B can lead to loss of transport and functional expression of the hNav1.5 protein, leading to reduction in sodium channel current and clinical manifestation of a Brugada phenotype.


Journal of the American College of Cardiology | 2014

Mutations in SCN10A Are Responsible for a Large Fraction of Cases of Brugada Syndrome

Dan Hu; Hector Barajas-Martinez; Ryan Pfeiffer; Fabio Dezi; Jenna Pfeiffer; Tapan Buch; Matthew J. Betzenhauser; Luiz Belardinelli; Kristopher M. Kahlig; Sridharan Rajamani; Harry J. Deantonio; Robert J. Myerburg; Hiroyuki Ito; Pramod Deshmukh; Mark Marieb; Gi Byoung Nam; Atul Bhatia; Can Hasdemir; Michel Haïssaguerre; Christian Veltmann; Rainer Schimpf; Martin Borggrefe; Sami Viskin; Charles Antzelevitch

BACKGROUND BrS is an inherited sudden cardiac death syndrome. Less than 35% of BrS probands have genetically identified pathogenic variants. Recent evidence has implicated SCN10A, a neuronal sodium channel gene encoding Nav1.8, in the electrical function of the heart. OBJECTIVES The purpose of this study was to test the hypothesis that SCN10A variants contribute to the development of Brugada syndrome (BrS). METHODS Clinical analysis and direct sequencing of BrS susceptibility genes were performed for 150 probands and family members as well as >200 healthy controls. Expression and coimmunoprecipitation studies were performed to functionally characterize the putative pathogenic mutations. RESULTS We identified 17 SCN10A mutations in 25 probands (20 male and 5 female); 23 of the 25 probands (92.0%) displayed overlapping phenotypes. SCN10A mutations were found in 16.7% of BrS probands, approaching our yield for SCN5A mutations (20.1%). Patients with BrS who had SCN10A mutations were more symptomatic and displayed significantly longer PR and QRS intervals compared with SCN10A-negative BrS probands. The majority of mutations localized to the transmembrane-spanning regions. Heterologous coexpression of wild-type (WT) SCN10A with WT-SCN5A in HEK cells caused a near doubling of sodium channel current compared with WT-SCN5A alone. In contrast, coexpression of SCN10A mutants (R14L and R1268Q) with WT-SCN5A caused a 79.4% and 84.4% reduction in sodium channel current, respectively. The coimmunoprecipitation studies provided evidence for the coassociation of Nav1.8 and Nav1.5 in the plasma membrane. CONCLUSIONS Our study identified SCN10A as a major susceptibility gene for BrS, thus greatly enhancing our ability to genotype and risk stratify probands and family members.


Heart Rhythm | 2012

Molecular genetic and functional association of Brugada and early repolarization syndromes with S422L missense mutation in KCNJ8.

Hector Barajas-Martinez; Dan Hu; Tania Ferrer; Carlos G. Onetti; Yuesheng Wu; Elena Burashnikov; Madalene Boyle; Tyler Surman; Janire Urrutia; Christian Veltmann; Rainer Schimpf; Martin Borggrefe; Christian Wolpert; Bassiema Ibrahim; José A. Sánchez-Chapula; Stephen L. Winters; Michel Haïssaguerre; Charles Antzelevitch

BACKGROUND Adenosine triphosphate (ATP)-sensitive potassium cardiac channels consist of inward-rectifying channel subunits Kir6.1 or Kir6.2 (encoded by KCNJ8 or KCNJ11) and the sulfonylurea receptor subunits SUR2A (encoded by ABCC9). OBJECTIVE To examine the association of mutations in KCNJ8 with Brugada syndrome (BrS) and early repolarization syndrome (ERS) and to elucidate the mechanism underlying the gain of function of ATP-sensitive potassium channel current. METHODS Direct sequencing of KCNJ8 and other candidate genes was performed on 204 BrS and ERS probands and family members. Whole-cell and inside-out patch-clamp methods were used to study mutated channels expressed in TSA201 cells. RESULTS The same missense mutation, p.Ser422Leu (c.1265C>T) in KCNJ8, was identified in 3 BrS and 1 ERS probands but was absent in 430 alleles from ethnically matched healthy controls. Additional genetic variants included CACNB2b-D601E. Whole-cell patch-clamp studies showed a 2-fold gain of function of glibenclamide-sensitive ATP-sensitive potassium channel current when KCNJ8-S422L was coexpressed with SUR2A-wild type. Inside-out patch-clamp evaluation yielded a significantly greater half maximal inhibitory concentration for ATP in the mutant channels (785.5 ± 2 vs 38.4 ± 3 μM; n = 5; P <.01), pointing to incomplete closing of the ATP-sensitive potassium channels under normoxic conditions. Patients with a CACNB2b-D601E polymorphism displayed longer QT/corrected QT intervals, likely owing to their effect to induce an increase in L-type calcium channel current (I(Ca-L)). CONCLUSIONS Our results support the hypothesis that KCNJ8 is a susceptibility gene for BrS and ERS and point to S422L as a possible hotspot mutation. Our findings suggest that the S422L-induced gain of function in ATP-sensitive potassium channel current is due to reduced sensitivity to intracellular ATP.


European Heart Journal | 2011

Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6)

Christian Templin; Jelena-Rima Ghadri; Jean-Sébastien Rougier; Alessandra Baumer; Vladimir Kaplan; Maxime Albesa; Heinrich Sticht; Anita Rauch; Colleen Puleo; Dan Hu; Hector Barajas-Martinez; Charles Antzelevitch; Thomas F. Lüscher; Hugues Abriel; Firat Duru

AIMS Short QT syndrome (SQTS) is a genetically determined ion-channel disorder, which may cause malignant tachyarrhythmias and sudden cardiac death. Thus far, mutations in five different genes encoding potassium and calcium channel subunits have been reported. We present, for the first time, a novel loss-of-function mutation coding for an L-type calcium channel subunit. METHODS AND RESULTS The electrocardiogram of the affected member of a single family revealed a QT interval of 317 ms (QTc 329 ms) with tall, narrow, and symmetrical T-waves. Invasive electrophysiological testing showed short ventricular refractory periods and increased vulnerability to induce ventricular fibrillation. DNA screening of the patient identified no mutation in previously known SQTS genes; however, a new variant at a heterozygous state was identified in the CACNA2D1 gene (nucleotide c.2264G > C; amino acid p.Ser755Thr), coding for the Ca(v)α(2)δ-1 subunit of the L-type calcium channel. The pathogenic role of the p.Ser755Thr variant of the CACNA2D1 gene was analysed by using co-expression of the two other L-type calcium channel subunits, Ca(v)1.2α1 and Ca(v)β(2b), in HEK-293 cells. Barium currents (I(Ba)) were recorded in these cells under voltage-clamp conditions using the whole-cell configuration. Co-expression of the p.Ser755Thr Ca(v)α(2)δ-1 subunit strongly reduced the I(Ba) by more than 70% when compared with the co-expression of the wild-type (WT) variant. Protein expression of the three subunits was verified by performing western blots of total lysates and cell membrane fractions of HEK-293 cells. The p.Ser755Thr variant of the Ca(v)α(2)δ-1 subunit was expressed at a similar level compared with the WT subunit in both fractions. Since the mutant Ca(v)α(2)δ-1 subunit did not modify the expression of the pore-forming subunit of the L-type calcium channel, Ca(v)1.2α1, it suggests that single channel biophysical properties of the L-type channel are altered by this variant. CONCLUSION In the present study, we report the first pathogenic mutation in the CACNA2D1 gene in humans, which causes a new variant of SQTS. It remains to be determined whether mutations in this gene lead to other manifestations of the J-wave syndrome.


PLOS ONE | 2012

Maximum Diastolic Potential of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Depends Critically on IKr

Michael Xavier Doss; José M. Di Diego; Robert J. Goodrow; Yuesheng Wu; Jonathan M. Cordeiro; Vladislav V. Nesterenko; Hector Barajas-Martinez; Dan Hu; Janire Urrutia; Mayurika Desai; Jacqueline A. Treat; Agapios Sachinidis; Charles Antzelevitch

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) hold promise for therapeutic applications. To serve these functions, the hiPSC-CM must recapitulate the electrophysiologic properties of native adult cardiomyocytes. This study examines the electrophysiologic characteristics of hiPSC-CM between 11 and 121 days of maturity. Embryoid bodies (EBs) were generated from hiPS cell line reprogrammed with Oct4, Nanog, Lin28 and Sox2. Sharp microelectrodes were used to record action potentials (AP) from spontaneously beating clusters (BC) micro-dissected from the EBs (n = 103; 37°C) and to examine the response to 5 µM E-4031 (n = 21) or BaCl2 (n = 22). Patch-clamp techniques were used to record IKr and IK1 from cells enzymatically dissociated from BC (n = 49; 36°C). Spontaneous cycle length (CL) and AP characteristics varied widely among the 103 preparations. E-4031 (5 µM; n = 21) increased Bazett-corrected AP duration from 291.8±81.2 to 426.4±120.2 msec (p<0.001) and generated early afterdepolarizations in 8/21 preparations. In 13/21 BC, E-4031 rapidly depolarized the clusters leading to inexcitability. BaCl2, at concentrations that selectively block IK1 (50–100 µM), failed to depolarize the majority of clusters (13/22). Patch-clamp experiments revealed very low or negligible IK1 in 53% (20/38) of the cells studied, but presence of IKr in all (11/11). Consistent with the electrophysiological data, RT-PCR and immunohistochemistry studies showed relatively poor mRNA and protein expression of IK1 in the majority of cells, but robust expression of IKr. In contrast to recently reported studies, our data point to major deficiencies of hiPSC-CM, with remarkable diversity of electrophysiologic phenotypes as well as pharmacologic responsiveness among beating clusters and cells up to 121 days post-differentiation (dpd). The vast majority have a maximum diastolic potential that depends critically on IKr due to the absence of IK1. Thus, efforts should be directed at producing more specialized and mature hiPSC-CM for future therapeutic applications.


Heart Rhythm | 2012

A novel rare variant in SCN1Bb linked to Brugada syndrome and SIDS by combined modulation of Nav1.5 and Kv4.3 channel currents

Dan Hu; Hector Barajas-Martinez; Argelia Medeiros-Domingo; Lia Crotti; Christian Veltmann; Rainer Schimpf; Janire Urrutia; Aintzane Alday; Oscar Casis; Ryan Pfeiffer; Elena Burashnikov; Gabriel Caceres; David J. Tester; Christian Wolpert; Martin Borggrefe; Peter J. Schwartz; Michael J. Ackerman; Charles Antzelevitch

BACKGROUND Cardiac sodium channel β-subunit mutations have been associated with several inherited cardiac arrhythmia syndromes. OBJECTIVE To identify and characterize variations in SCN1Bb associated with Brugada syndrome (BrS) and sudden infant death syndrome (SIDS). METHODS All known exons and intron borders of the BrS-susceptibility genes were amplified and sequenced in both directions. Wild type (WT) and mutant genes were expressed in TSA201 cells and studied using co-immunoprecipitation and whole-cell patch-clamp techniques. RESULTS Patient 1 was a 44-year-old man with an ajmaline-induced type 1 ST-segment elevation in V1 and V2 supporting the diagnosis of BrS. Patient 2 was a 62-year-old woman displaying a coved-type BrS electrocardiogram who developed cardiac arrest during fever. Patient 3 was a 4-month-old female SIDS case. A R214Q variant was detected in exon 3A of SCN1Bb (Na(v)1B) in all three probands, but not in any other gene previously associated with BrS or SIDS. R214Q was identified in 4 of 807 ethnically-matched healthy controls (0.50%). Co-expression of SCN5A/WT + SCN1Bb/R214Q resulted in peak sodium channel current (I(Na)) 56.5% smaller compared to SCN5A/WT + SCN1Bb/WT (n = 11-12, P<0.05). Co-expression of KCND3/WT + SCN1Bb/R214Q induced a Kv4.3 current (transient outward potassium current, I(to)) 70.6% greater compared with KCND3/WT + SCN1Bb/WT (n = 10-11, P<0.01). Co-immunoprecipitation indicated structural association between Na(v)β1B and Na(v)1.5 and K(v)4.3. CONCLUSION Our results suggest that R214Q variation in SCN1Bb is a functional polymorphism that may serve as a modifier of the substrate responsible for BrS or SIDS phenotypes via a combined loss of function of sodium channel current and gain of function of transient outward potassium current.


Circulation | 2006

Compound Heterozygous Mutations P336L and I1660V in the Human Cardiac Sodium Channel Associated With the Brugada Syndrome

Jonathan M. Cordeiro; Hector Barajas-Martinez; Kui Hong; Elena Burashnikov; Ryan Pfeiffer; Anne-Marie Orsino; Yue Sheng Wu; Dan Hu; Josep Brugada; Pedro Brugada; Charles Antzelevitch; Robert Dumaine; Ramon Brugada

Background— Loss-of-function mutations in SCN5A have been associated with the Brugada syndrome. We report the first Brugada syndrome family with compound heterozygous mutations in SCN5A. The proband inherited 1 mutation from each parent and transmitted 1 to each daughter. Methods and Results— The effects of the mutations on the function of the sodium channel were evaluated with heterologous expression in TSA201 cells, patch-clamp study, and confocal microscopy. Genetic analysis revealed that the proband carried 2 heterozygous missense mutations (P336L and I1660V) on separate alleles. He displayed a coved-type ST-segment elevation and a prolonged PR interval (280 ms). One daughter inherited P336L and exhibited a prolonged PR (210 ms). The other daughter inherited mutation I1660V and displayed a normal PR interval. Both daughters had a slightly elevated, upsloping ST-segment elevation. The parents had normal ECGs. Patch-clamp analysis showed that the P336L mutation reduced INa by 85% relative to wild type. The I1660V mutation produced little measurable current, which was rescued by room temperature incubation for 48 hours. Sodium channel blockers also rescued the I1660V current, with mexiletine proving to be the most effective. Confocal immunofluorescence showed that I1660V channels conjugated to green fluorescent protein remained trapped in intracellular organelles. Conclusions— Mutation P336L produced a reduction in cardiac INa, whereas I1660V abolished it. Only the proband carrying both mutations displayed the Brugada syndrome phenotype, whereas neither mutation alone produced the clinical phenotype. I1660V channels could be rescued pharmacologically and by incubation at room temperature. The present data highlight the role of compound heterozygosity in modulating the phenotypic expression and penetrance of Brugada syndrome.


International Journal of Cardiology | 2014

ABCC9 is a novel Brugada and early repolarization syndrome susceptibility gene.

Dan Hu; Hector Barajas-Martinez; Andre Terzic; Sungjo Park; Ryan Pfeiffer; Elena Burashnikov; Yuesheng Wu; Martin Borggrefe; Christian Veltmann; Rainer Schimpf; John J. Cai; Gi Byong Nam; Pramod Deshmukh; Melvin M. Scheinman; Mark Preminger; Jonathan S. Steinberg; Daniela Ponce-Balbuena; Christian Wolpert; Michel Haïssaguerre; José A. Sánchez-Chapula; Charles Antzelevitch

BACKGROUND Genetic defects in KCNJ8, encoding the Kir6.1 subunit of the ATP-sensitive K(+) channel (I(K-ATP)), have previously been associated with early repolarization (ERS) and Brugada (BrS) syndromes. Here we test the hypothesis that genetic variants in ABCC9, encoding the ATP-binding cassette transporter of IK-ATP (SUR2A), are also associated with both BrS and ERS. METHODS AND RESULTS Direct sequencing of all ERS/BrS susceptibility genes was performed on 150 probands and family members. Whole-cell and inside-out patch-clamp methods were used to characterize mutant channels expressed in TSA201-cells. Eight ABCC9 mutations were uncovered in 11 male BrS probands. Four probands, diagnosed with ERS, carried a highly-conserved mutation, V734I-ABCC9. Functional expression of the V734I variant yielded a Mg-ATP IC₅₀ that was 5-fold that of wild-type (WT). An 18-y/o male with global ERS inherited an SCN5A-E1784K mutation from his mother, who displayed long QT intervals, and S1402C-ABCC9 mutation from his father, who displayed an ER pattern. ABCC9-S1402C likewise caused a gain of function of IK-ATP with a shift of ATP IC₅₀ from 8.5 ± 2 mM to 13.4 ± 5 μM (p<0.05). The SCN5A mutation reduced peak INa to 39% of WT (p<0.01), shifted steady-state inactivation by -18.0 mV (p<0.01) and increased late I(Na) from 0.14% to 2.01% of peak I(Na) (p<0.01). CONCLUSION Our study is the first to identify ABCC9 as a susceptibility gene for ERS and BrS. Our findings also suggest that a gain-of-function in I(K-ATP) when coupled with a loss-of-function in SCN5A may underlie type 3 ERS, which is associated with a severe arrhythmic phenotype.


Journal of Molecular and Cellular Cardiology | 2014

Mechanisms underlying the development of the electrocardiographic and arrhythmic manifestations of early repolarization syndrome

István Koncz; Zsolt Gurabi; Bence Patocskai; Brian K. Panama; Tamás Szél; Dan Hu; Hector Barajas-Martinez; Charles Antzelevitch

Early repolarization pattern in the ECG has been associated with increased risk for ventricular tachycardia/fibrillation (VT/VF), particularly when manifest in inferior leads. This study examines the mechanisms underlying VT/VF in early repolarization syndrome (ERS). Transmembrane action potentials (APs) were simultaneously recorded from 2 epicardial sites and 1 endocardial site of coronary-perfused canine left-ventricular (LV) wedge preparations, together with a pseudo-ECG. Transient outward current (Ito) was recorded from epicardial myocytes isolated from the inferior and lateral LV of the same heart. J wave area (pseudo-ECG), epicardial AP notch magnitude and index were larger in inferior vs. lateral wall preparations at baseline and after exposure to provocative agents (NS5806+verapamil+acetylcholine (ACh)). Ito density was greater in myocytes from inferior vs. lateral wall (18.4 ± 2.3pA/pF vs. 11.6 ± 2.0pA/pF; p<0.05). A combination of NS5806 (7 μM) and verapamil (3 μM) or pinacidil (4 μM), used to pharmacologically model the genetic defects responsible for ERS, resulted in prominent J-point and ST-segment elevation. ACh (3 μM), simulating increased vagal tone, precipitated phase-2-reentry-induced polymorphic VT/VF. Using identical protocols, inducibility of arrhythmias was 3-fold higher in inferior vs. lateral wedges. Quinidine (10 μM) or isoproterenol (1 μM) restored homogeneity and suppressed VT/VF. Our data support the hypothesis that 1) ERS is caused by a preferential accentuation of the AP notch in the LV epicardium; 2) this repolarization defect is accentuated by elevated vagal tone; 3) higher intrinsic levels of Ito account for the greater sensitivity of the inferior LV wall to development of VT/VF; and 4) quinidine and isoproterenol exert ameliorative effects by reversing the repolarization abnormality.

Collaboration


Dive into the Hector Barajas-Martinez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles Antzelevitch

Lankenau Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan Pfeiffer

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Dumaine

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Yuesheng Wu

University of Guadalajara

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge