Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hector Biliran is active.

Publication


Featured researches published by Hector Biliran.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Maspin expression inhibits osteolysis, tumor growth, and angiogenesis in a model of prostate cancer bone metastasis

Michael L. Cher; Hector Biliran; Sunita Bhagat; Yonghong Meng; Mingxin Che; Jaron Lockett; Judith Abrams; Rafael Fridman; Michael Zachareas; Shijie Sheng

Emerging evidence indicates that tumor-associated proteolytic remodeling of bone matrix may underlie the capacity of tumor cells to colonize and survive in the bone microenvironment. Of particular importance, urokinase-type plasminogen activator (uPA) has been shown to correlate with human prostate cancer (PC) metastasis. The importance of this protease may be related to its ability to initiate a proteolytic cascade, leading to the activation of multiple proteases and growth factors. Previously, we showed that maspin, a serine protease inhibitor, specifically inhibits PC-associated uPA and PC cell invasion and motility in vitro. In this article, we showed that maspin-expressing transfectant cells derived from PC cell line DU145 were inhibited in in vitro extracellular matrix and collagen degradation assays. To test the effect of tumor-associated maspin on PC-induced bone matrix remodeling and tumor growth, we injected the maspin-transfected DU145 cells into human fetal bone fragments, which were previously implanted in immunodeficient mice. These studies showed that maspin expression decreased tumor growth, reduced osteolysis, and decreased angiogenesis. Furthermore, the maspin-expressing tumors contained significant fibrosis and collagen staining, and exhibited a more glandular organization. These data represent evidence that maspin inhibits PC-induced bone matrix remodeling and induces PC glandular redifferentiation. These results support our current working hypothesis that maspin exerts its tumor suppressive role, at least in part, by blocking the pericellular uPA system and suggest that maspin may offer an opportunity to improve therapeutic intervention of bone metastasis.


Clinical Cancer Research | 2005

Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line

Hector Biliran; Yong Wang; Sanjeev Banerjee; Haiming Xu; Henry H.Q. Heng; Archana Thakur; Aliccia Bollig; Fazlul H. Sarkar; Joshua D. Liao

Purpose: Elevated cyclin D1 in human pancreatic cancer correlates with poor prognosis. Because pancreatic cancer is invariably resistant to chemotherapy, the goal of this study was to examine whether the drug resistance of pancreatic cancer cells is in part attributed to cyclin D1 overexpression. Experimental Design: Stable overexpression and small interfering RNA (siRNA)–mediated knockdown of cyclin D1 were done in the newly established Ela-myc pancreatic tumor cell line. Cisplatin sensitivity of control, overexpressing, and siRNA-transfected cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, clonogenic, and apoptotic assays [DNA fragmentation, sub-G1, and poly(ADP-ribose) polymerase cleavage analysis]. The role of nuclear factor-κB and apoptotic proteins in cyclin D1-mediated chemoresistance was examined by EMSA and Western blotting, respectively. Results: Overexpression of cyclin D1 in Ela-myc pancreatic tumor cells promoted cell proliferation and anchorage-independent growth. Moreover, cyclin D1–overexpressing cells exhibited significantly reduced chemosensitivity and a higher survival rate upon cisplatin treatment, as determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and clonogenic assays, respectively. Although overexpression of cyclin D1 rendered cells more resistant to cisplatin-induced apoptosis, siRNA-directed suppression of cyclin D1 expression resulted in enhanced susceptibility to cisplatin-mediated apoptosis. The attenuation of cisplatin-induced cell death in cyclin D1–overexpressing cells was correlated with the up-regulation of nuclear factor-κB activity and maintenance of bcl-2 and bcl-xl protein levels. Conclusions: These results suggest that overexpression of cyclin D1 can contribute to chemoresistance of pancreatic cancer cells because of the dual roles of cyclin D1 in promoting cell proliferation and in inhibiting drug-induced apoptosis.


Molecular Cancer Research | 2007

Aberrant expression of X-linked genes RbAp46, Rsk4, and Cldn2 in breast cancer.

Archana Thakur; Km Wahidur Rahman; Jack Wu; Aliccia Bollig; Hector Biliran; Xiukun Lin; Hind Nassar; David J. Grignon; Fazlul H. Sarkar; Joshua D. Liao

The consequence of activation status or gain/loss of an X-chromosome in terms of the expression of tumor suppressor genes or oncogenes in breast cancer has not been clearly addressed. In this study, we investigated the activation status of the X-chromosomes in a panel of human breast cancer cell lines, human breast carcinoma, and adjacent mammary tissues and a panel of murine mammary epithelial sublines ranging from low to high invasive potentials. Results show that most human breast cancer cell lines were homozygous, but both benign cell lines were heterozygous for highly polymorphic X-loci (IDS and G6PD). On the other hand, 60% of human breast carcinoma cases were heterozygous for either IDS or G6PD markers. Investigation of the activation status of heterozygous cell lines revealed the presence of only one active X-chromosome, whereas most heterozygous human breast carcinoma cases had two active X-chromosomes. Furthermore, we determined whether or not an additional active X-chromosome affects expression levels of tumor suppressor genes and oncogenes. Reverse transcription-PCR data show high expression of putative tumor suppressor genes Rsk4 and RbAp46 in 47% and 79% of breast carcinoma cases, respectively, whereas Cldn2 was down-regulated in 52% of breast cancer cases compared with normal adjacent tissues. Consistent with mRNA expression, immunostaining for these proteins also showed a similar pattern. In conclusion, our data suggest that high expression of RbAp46 is likely to have a role in the development or progression of human breast cancer. The activation status of the X-chromosome may influence the expression levels of X-linked oncogenes or tumor suppressor genes. (Mol Cancer Res 2007;5(2):171–81)


Clinical Cancer Research | 2007

c-Myc-induced chemosensitization is mediated by suppression of cyclin D1 expression and nuclear factor-κB activity in Pancreatic cancer cells

Hector Biliran; Sanjeev Banerjee; Archana Thakur; Fazlul H. Sarkar; Aliccia Bollig; Fakhara Ahmed; Jiusheng Wu; Yuan Sun; Joshua D. Liao

Purpose: Pancreatic cancer is a highly aggressive disease that remains refractory to various chemotherapeutic agents. Because the proto-oncogene c-myc can modulate apoptosis in response to cytotoxic insults and is commonly overexpressed in pancreatic cancer, we investigated the value of c-myc as a potential modulator of cellular response to various chemotherapeutic agents. Experimental Design: Stable overexpression or small interfering RNA (siRNA)–mediated knockdown of c-myc and restoration of cyclin D1 were done in the Ela-myc pancreatic tumor cell line. Cell viability after cisplatin treatment of c-myc–overexpressing, control, and siRNA-transfected cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and drug-induced apoptosis was measured by DNA fragmentation, sub-G1, and poly(ADP-ribose) polymerase cleavage analyses. Protein expression profile after cisplatin treatment was determined by Western blotting and DNA binding activity of nuclear factor-κB was examined by electrophoretic mobility shift assay. Results: Ectopic overexpression of c-myc in murine and human pancreatic cancer cell lines, Ela-myc and L3.6pl, respectively, resulted in increased sensitivity to cisplatin and other chemotherapeutic drugs. Increased sensitivity to cisplatin in c-myc–overexpressing cells was due, in part, to the marked increase in cisplatin-induced apoptosis. Conversely, down-regulation of c-myc expression in stable c-myc–overexpressing cells by c-myc siRNA resulted in decreased sensitivity to cisplatin-induced cell death. These results indicate an important role of c-myc in chemosensitivity of pancreatic cancer cells. The c-myc–induced cisplatin sensitivity correlated with inhibition of nuclear factor κB activity, which was partially restored by ectopic cyclin D1 overexpression. Conclusions: Our results suggest that the c-myc–dependent sensitization to chemotherapy-induced apoptosis involves suppression of cyclin D1 expression and nuclear factor κB activity.


Clinical Cancer Research | 2008

Anti-invasive and antimetastatic activities of ribosomal protein S6 kinase 4 in breast cancer cells

Archana Thakur; Yuan Sun; Aliccia Bollig; Jack Wu; Hector Biliran; Sanjeev Banerjee; Fazlul H. Sarkar; D. Joshua Liao

Purpose: We have previously shown that p90 ribosomal protein S6 kinase 4 (RSK4), an X-linked gene, is highly up-regulated in mammary tumors of MMTV-c-Myc transgenic mice. In this study, we further investigated whether RSK4 inhibits or promotes breast tumor growth and progression. Experimental Design: Stable overexpression or small interfering RNA–mediated knockdown of RSK4 was done in the MDA-MB-231 cell line. Stable clones were tested for cell proliferation, anchorage-independent growth in soft agar, invasive and metastatic ability of these clones in vitro and tumorigenesis, invasive and metastatic ability in vivo in severe combined immunodeficient mice. Results: Here, we show that exogenous expression of RSK4 resulted in decreased cell proliferation and increased accumulation of cells in G0-G1 phase, which paralleled with enhanced expression of tumor suppressor genes: retinoblastoma protein, retinobl astoma-associated 46 kDa protein, and p21 protein. Overexpression of RSK4 resulted in reduced colony formation in soft agar and suppressed invasive and migratory activities of MDA-MB-231 cells both in vitro and in vivo. Importantly, RSK4-overexpressing cells showed up-regulation of claudin-2 and down-regulation of CXCR4, both of these play roles in invasion and chemotaxis. Conclusions: These results indicate that RSK4 expression may limit the oncogenic, invasive, and metastatic potential of breast cancer cells. Anti-invasive and antimetastatic activities of RSK4 may be, in part, due to its regulation of claudin-2. Increased expression of RSK4 in c-Myc-overexpressing cells and a dose-dependent induction of luciferase reporter gene activity suggest that c-Myc may regulate RSK4 expression.


Cancer Research | 2007

Synergistic Effect of Cyclin D1 and c-Myc Leads to More Aggressive and Invasive Mammary Tumors in Severe Combined Immunodeficient Mice

Yong Wang; Archana Thakur; Yuan Sun; Jack Wu; Hector Biliran; Aliccia Bollig; D. Joshua Liao

Cyclin D1 is one of the most commonly overexpressed oncogenes in breast cancer; yet, it is not clear whether cyclin D1 alone is capable of causing malignant transformation of mammary epithelial cells. Here, we show that ectopic expression of cyclin D1 in benign mouse mammary epithelial cells promotes cell proliferation, anchorage-independent growth in soft agar, and tumorigenesis in severe combined immunodeficient mice. To address the possible interaction of cyclin D1 and c-myc in malignant transformation, we used cyclin D1/c-myc dual-expressing clones, which displayed more aggressive and invasive phenotype than cyclin D1-expressing clones. These data provide evidence that overexpression of cyclin D1 or coexpression with c-myc could cause invasive malignant transformation of benign mouse mammary epithelial cells. Furthermore, microarray analysis of cyclin D1 and cyclin D1/c-myc clones showed that these two tumor-producing clones might use distinct invasive pathways. In summary, overexpression of cyclin D1 may commit mammary epithelia to a tumor-prone phenotype in which cooperation with other genes, such as synergy with c-myc, may lead to a more aggressive phenotype.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Anoikis effector Bit1 negatively regulates Erk activity

Rania Kairouz-Wahbe; Hector Biliran; Xiuquan Luo; IngWei Khor; Miriam Wankell; Cynthia Besch-Williford; Jaime Pascual; Robert G. Oshima; Erkki Ruoslahti

Bcl-2 inhibitor of transcription (Bit1) is a mitochondrial protein that functions as a peptidyl-tRNA hydrolase, but, when released into the cytoplasm, it elicits apoptosis. The proapoptotic function is uniquely counteracted by integrin-mediated cell attachment. We generated a conditional KO mouse of the Bit1 gene by using the Cre-LoxP recombination system. Bit1-null mice were born alive but with some developmental abnormalities. They developed a runting syndrome after birth and died within the first 2 weeks. Cultured fibroblasts from the Bit1-null embryos [mouse embryo fibroblasts (MEFs)] were more resistant to cell death induced by loss of attachment to extracellular matrix (anoikis) than cells from the wild-type or heterozygous littermates. MEFs and tissues from Bit1 KO mice displayed a marked increase in Erk phosphorylation. Knocking down Bit1 expression in cultured cells resulted in increased Erk activation, and partially knocking down Erk reversed the increased anoikis resistance of Bit1 knockdown. The enhanced Erk activation was associated with decreased Erk phosphatase activity. These studies establish the physiological significance of Bit1 activity and begin to delineate a Bit1 signaling pathway that acts through Erk regulation.


Journal of Biological Chemistry | 2008

Protein Kinase D Is a Positive Regulator of Bit1 Apoptotic Function

Hector Biliran; Yiwen Jan; Renwei Chen; Elena B. Pasquale; Erkki Ruoslahti

Bit1 (Bcl-2 inhibitor of transcription) is a mitochondrial protein that induces caspase-independent apoptosis upon its release into the cytoplasm. Bit1 is primarily associated with anoikis (cell death induced by detachment from the extracellular matrix), because the apoptotic function of Bit1 is inhibited by integrin-mediated cell attachment but not by many other antiapoptotic treatments. Here, we show that protein kinase D (PKD) regulates Bit1 apoptotic function. Overexpression of constitutively active PKD or PKD activation by treatment with phorbol 12-myristate 13-acetate results in phosphorylation of two serine residues (Ser5 and Ser87) in a form of Bit1 that is confined to the cytoplasm and concomitantly increases the apoptotic activity of cytoplasmic Bit1. Conversely, suppressing PKD activity with pharmacological inhibitors or small interfering RNA approaches attenuates apoptosis induced by cytoplasmic Bit1. Furthermore, PKD regulates induction of cell death by wild-type Bit1 following loss of cell attachment to the extracellular matrix. Activation of PKD enhances Bit1 function in anoikis, whereas inhibiting PKD function with pharmacological inhibitors or small interfering RNA compromises the ability of Bit1 to induce anoikis. The induction of Bit1-mediated apoptosis by PKD is in part attributable to the release of Bit1 from mitochondria to the cytoplasm as a consequence of phosphorylation of Ser5 in the mitochondrial localization sequence of Bit1. Consistent with the regulatory role of PKD in the anoikis function of Bit1, we found that cell attachment to fibronectin inhibits PKD activity. These studies identify the PKD serine/threonine kinase as one of the signaling molecules through which integrin-mediated cell attachment controls Bit1 activity and anoikis.


Breast Cancer Research and Treatment | 2005

The role of X-linked genes in breast cancer.

Archana Thakur; Hiaming Xu; Yong Wang; Aliccia Bollig; Hector Biliran; Joshua D. Liao

While contribution of X chromosome in the susceptibility of prostate and ovarian cancer has been demonstrated, the role of X-linked genes in breast cancinogenesis is not clearly known. This study investigated and compared the X-linked gene expression profiles of MMTV-c-myc transgenic mammary tumor (MT) or MMTV-c-myc/MT-tgf-α double transgenic mouse mammary tumor (DT) to lactating mammary gland. cDNA microarray analysis using the Affymetrix system identified 1081 genes localized on the X chromosome with 174 and 194 genes at ±2-fold change levels in MT and DT samples, respectively. Differentially expressed X-linked genes were predominantly related to chromatin structure/remodeling (e.g., Hdac8, Suv39h1, RbAp46 and Adr1), segregation (e.g., CENP-I and smc111) and, ribosomal biogenesis and translational control (e.g., Dkc1, Rpl44, Rpl39, Eif2s3x, Gspt2 and Rsk4). Confirmation of microarray data by semi-quantitative and quantitative RT-PCR in selected X-linked genes also showed similar pattern. In addition, the expression pattern of two chromosomal regions, XE3 and XF5, suggests that XE3 may have escaped from inactivation and XF5 subjected to inactivation. In conclusion, our data suggest that X-linked genes may play the key regulatory roles in the maintenance of chromatin structure, accurate chromosomal segregation and translational control; hence deregulation of X-linked genes may promote mammary gland tumorigenesis by promoting genetic instability and cell proliferation. Increased understanding of the role of X-linked genes and genetic pathways will provide the strategies to develop the molecular therapeutics to treat and prevent reproductive related cancers.


Molecular Cancer Research | 2012

TLE1 is an anoikis regulator and is downregulated by Bit1 in breast cancer cells

Chris Brunquell; Hector Biliran; Scott Jennings; Shubha Kale Ireland; Renwei Chen; Erkki Ruoslahti

TLE1 is a Groucho-related transcriptional repressor protein that exerts survival and antiapoptotic function in several cellular systems and has been implicated in the pathogenesis of cancer. In the present study, we found that TLE1 is a regulator of anoikis in normal mammary epithelial and breast carcinoma cells. The induction of apoptosis following loss of cell attachment to the extracellular matrix (anoikis) in untransformed mammary epithelial MCF10A cells was associated with significant downregulation of TLE1 expression. Forced expression of exogenous TLE1 in these cells promoted resistance to anoikis. In breast cancer cells, TLE1 expression was significantly upregulated following detachment from the extracellular matrix. Genetic manipulation of TLE1 expression via overexpression and downregulation approaches indicated that TLE1 promotes the anoikis resistance and anchorage-independent growth of breast carcinoma cells. Mechanistically, we show that TLE1 inhibits the Bit1 anoikis pathway by reducing the formation of the proapoptotic Bit1-AES complex in part through sequestration of AES in the nucleus. The mitochondrial release of Bit1 during anoikis as well as exogenous expression of the cytoplasmic localized Bit1 or its cell death domain induced cytoplasmic translocation and degradation of nuclear TLE1 protein. These findings indicate a novel role for TLE1 in the maintenance of anoikis resistance in breast cancer cells. This conclusion is supported by an immunohistochemical analysis of a breast cancer tissue array illustrating that TLE1 is selectively upregulated in invasive breast tumors relative to noninvasive ductal carcinoma in situ and normal mammary epithelial tissues. Mol Cancer Res; 10(11); 1482–95. ©2012 AACR.

Collaboration


Dive into the Hector Biliran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shubha Kale Ireland

Xavier University of Louisiana

View shared research outputs
Top Co-Authors

Avatar

Tri Pham

Xavier University of Louisiana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Yao

Xavier University of Louisiana

View shared research outputs
Top Co-Authors

Avatar

Brandi Temple

Xavier University of Louisiana

View shared research outputs
Top Co-Authors

Avatar

Jack Wu

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge