Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Héctor N. Seuánez is active.

Publication


Featured researches published by Héctor N. Seuánez.


PLOS Genetics | 2011

A Molecular Phylogeny of Living Primates

Polina L. Perelman; Warren E. Johnson; Christian Roos; Héctor N. Seuánez; Julie E. Horvath; Miguel A. M. Moreira; Bailey Kessing; Joan Pontius; Melody E. Roelke; Y. Rumpler; Maria Paula Cruz Schneider; Artur Silva; Stephen J. O'Brien; Jill Pecon-Slattery

Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (∼8 Mb) from 186 primates representing 61 (∼90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species.


Journal of Heredity | 2009

Genome 10K: A Proposal to Obtain Whole-Genome Sequence for 10 000 Vertebrate Species

David Haussler; Stephen J. O'Brien; Oliver A. Ryder; F. Keith Barker; Michele Clamp; Andrew J. Crawford; Robert Hanner; Olivier Hanotte; Warren E. Johnson; Jimmy A. McGuire; Webb Miller; Robert W. Murphy; William J. Murphy; Frederick H. Sheldon; Barry Sinervo; Byrappa Venkatesh; E. O. Wiley; Fred W. Allendorf; George Amato; C. Scott Baker; Aaron M. Bauer; Albano Beja-Pereira; Eldredge Bermingham; Giacomo Bernardi; Cibele R. Bonvicino; Sydney Brenner; Terry Burke; Joel Cracraft; Mark Diekhans; Scott V. Edwards

The human genome project has been recently complemented by whole-genome assessment sequence of 32 mammals and 24 nonmammalian vertebrate species suitable for comparative genomic analyses. Here we anticipate a precipitous drop in costs and increase in sequencing efficiency, with concomitant development of improved annotation technology and, therefore, propose to create a collection of tissue and DNA specimens for 10,000 vertebrate species specifically designated for whole-genome sequencing in the very near future. For this purpose, we, the Genome 10K Community of Scientists (G10KCOS), will assemble and allocate a biospecimen collection of some 16,203 representative vertebrate species spanning evolutionary diversity across living mammals, birds, nonavian reptiles, amphibians, and fishes (ca. 60,000 living species). In this proposal, we present precise counts for these 16,203 individual species with specimens presently tagged and stipulated for DNA sequencing by the G10KCOS. DNA sequencing has ushered in a new era of investigation in the biological sciences, allowing us to embark for the first time on a truly comprehensive study of vertebrate evolution, the results of which will touch nearly every aspect of vertebrate biological enquiry.


Journal of Bacteriology | 2005

Swine and Poultry Pathogens: the Complete Genome Sequences of Two Strains of Mycoplasma hyopneumoniae and a Strain of Mycoplasma synoviae

Ana Tereza R. Vasconcelos; Henrique Bunselmeyer Ferreira; Cristiano Valim Bizarro; Sandro L. Bonatto; Marcos Oliveira de Carvalho; Paulo Marcos Pinto; Darcy F. de Almeida; Luiz G. P. Almeida; Rosana Almeida; Leonardo Alves-Filho; E. Assunção; Vasco Azevedo; Maurício Reis Bogo; Marcelo M. Brigido; Marcelo Brocchi; Helio A. Burity; Anamaria A. Camargo; Sandro da Silva Camargo; Marta Sofia Peixe Carepo; Dirce M. Carraro; Júlio C. de Mattos Cascardo; Luiza Amaral de Castro; Gisele Cavalcanti; Gustavo Chemale; Rosane G. Collevatti; Cristina W. Cunha; Bruno Dallagiovanna; Bibiana Paula Dambrós; Odir A. Dellagostin; Clarissa Falcão

This work reports the results of analyses of three complete mycoplasma genomes, a pathogenic (7448) and a nonpathogenic (J) strain of the swine pathogen Mycoplasma hyopneumoniae and a strain of the avian pathogen Mycoplasma synoviae; the genome sizes of the three strains were 920,079 bp, 897,405 bp, and 799,476 bp, respectively. These genomes were compared with other sequenced mycoplasma genomes reported in the literature to examine several aspects of mycoplasma evolution. Strain-specific regions, including integrative and conjugal elements, and genome rearrangements and alterations in adhesin sequences were observed in the M. hyopneumoniae strains, and all of these were potentially related to pathogenicity. Genomic comparisons revealed that reduction in genome size implied loss of redundant metabolic pathways, with maintenance of alternative routes in different species. Horizontal gene transfer was consistently observed between M. synoviae and Mycoplasma gallisepticum. Our analyses indicated a likely transfer event of hemagglutinin-coding DNA sequences from M. gallisepticum to M. synoviae.


Molecular and Cellular Biology | 1988

The GLI-Kruppel family of human genes.

John M. Ruppert; Kenneth W. Kinzler; Albert J. Wong; Sandra H. Bigner; Fa-Ten Kao; Martha Liao Law; Héctor N. Seuánez; Stephen J. O'Brien; Bert Vogelstein

Previous characterization of GLI, a gene found to be amplified and expressed in a subset of human brain tumors, revealed the presence of five tandem zinc fingers related to those of Krüppel (Kr), a Drosophila segmentation gene of the gap class. We have used the GLI cDNA as a molecular probe to isolate related sequences from the human genome. Partial characterization of six related loci, including sequence determination, expression studies, and chromosome localization, revealed that each locus could encode a separate finger protein. The predicted proteins all had similar H-C links, i.e., a conserved stretch of 9 amino acids connecting the C-terminal histidine of one finger to the N-terminal cysteine of the next. On the basis of amino acid sequence and intron-exon organization, the genes could be placed into one of two subgroups: the GLI subgroup (with the consensus finger amino acid sequence [Y/F]XCX3GCX3[F/Y]X5LX2HX3-4H[T/S]GEKP) or the Kr subgroup (with the consensus finger amino acid sequence [Y/F]XCX2CX3FX5LX2HXRXHTGEKP). Unlike GLI or Kr, most of the newly isolated genes were expressed in many adult tissues. The predicted proteins probably control the expression of other genes and, by analogy with Kr and GLI, may be important in human development, tissue-specific differentiation, or neoplasia.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability

Ana Tereza Ribeiro de Vasconcelos; Darcy F. De Almeida; Mariangela Hungria; Claudia Teixeira Guimarães; Regina Vasconcellos Antônio; Francisca Cunha Almeida; Luiz G.P. De Almeida; Rosana Almeida; José Antonio Alves-Gomes; Elizabeth M. Mazoni Andrade; Júlia Rolão Araripe; Magnólia Fernandes Florêncio de Araújo; Spartaco Astolfi-Filho; Vasco Azevedo; Alessandra Jorge Baptistà; Luiz Artur Mendes Bataus; Jacqueline da Silva Batista; André Beló; Cássio van den Berg; Maurício Reis Bogo; Sandro L. Bonatto; Juliano Bordignon; Marcelo M. Macedo Brigidom; Cristiana A. Alves Brito; Marcelo Brocchi; Hélio Almeida Burity; Anamaria A. Camargo; Divina das Dôres de Paula Cardoso; N. P. Carneiro; Dirce Maria Carraro

Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) ≈500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) widespread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.


Chromosoma | 2001

Can molecular data place each neotropical monkey in its own branch

Horacio Schneider; Flavio Canavez; Iracilda Sampaio; Miguel Ângelo Martins Moreira; Claudia Helena Tagliaro; Héctor N. Seuánez

Abstract. Four different DNA datasets, representative of all extant neotropical primate genera, were tandemly aligned, comprising some 6,763 base pairs (bp) with 2,086 variable characters and 674 informative sites. Maximum Parsimony, Maximum Likelihood and Neighbor-Joining analyses suggested three monophyletic families (Atelidae, Pitheciidae and Cebidae) that emerged almost at the same time during primate radiation. Combined molecular data showed congruent branching inside the atelid clade, placing Alouatta as the most basal lineage followed by Ateles and a more derived branch including Brachyteles and Lagothrix as sister groups. In the Pitheciidae, Callicebus was the most basal lineage with respect to Pithecia and to the more derived sister groups (Cacajao and Chiropotes). Conjoint analysis strongly supported the monophyly of the Cebidae, grouping Aotus, Cebus and Saimiri with the small callitrichines. Within callitrichines, Cebuella merged with Callithrix, Callimico appeared as a sister group of Callithrix/Cebuella, Leontopitecus as a sister group of the previous clade, and Saguinus was the earliest callitrichine offshoot. Two major points remained to be clarified in platyrrhine phylogeny: (i) the exact branching pattern of Aotus, Cebus, Saimiri and the callitrichines, and (ii), which two of these three families (Atelidae, Pitheciidae and Cebidae) are more closely related to one another.


Human Genetics | 1990

Monocyte-derived neutrophil chemotactic factor (MDNCF/IL-8) resides in a gene cluster along with several other members of the platelet factor 4 gene superfamily

William S. Modi; Michael Dean; Héctor N. Seuánez; Naofumi Mukaida; Kouji Matsushima; Stephen J. O'Brien

SummaryMonocyte-derived neutrophil chemotactic factor (MDNCF/IL-8, suggested gene symbol IL8) is a cytokine that chemoattracts and activates neutrophils. Using a panel of human-rodent cell hybrids that preferentially segregate human chromosomes and in situ hybridization, the MDNCF/IL-8 gene was placed on the human gene map at position 4q12-q21. This is the same location where at least three other members (platelet factor 4, melanoma growth stimulatory activity, and interferon-γ induced factor) of the platelet factor 4 gene superfamily reside. In addition, a restriction fragment length polymorphism was identified using MDNCF as a probe in screening genomic DNA digested with HindIII from unrelated individuals.


Molecular Ecology | 1999

Disparate phylogeographic patterns of molecular genetic variation in four closely related South American small cat species

Warren E. Johnson; Jill Pecon Slattery; Eduardo Eizirik; Jae-Heup Kim; Marilyn Menotti Raymond; Cristián Bonacic; Richard C. Cambre; Peter G. Crawshaw; Adauto Luis Veloso Nunes; Héctor N. Seuánez; Miguel A. M. Moreira; Kevin L. Seymour; Faiçal Simon; William F. Swanson; Stephen J. O'Brien

Tissue specimens from four species of Neotropical small cats (Oncifelis geoffroyi, N = 38; O. guigna, N = 6; Leopardus tigrinus, N = 32; Lynchailurus colocolo, N = 22) collected from throughout their distribution were examined for patterns of DNA sequence variation using three mitochondrial genes, 16S rRNA, ATP8, and NADH‐5. Patterns between and among O. guigna and O. geoffroyi individuals were assessed further from size variation at 20 microsatellite loci. Phylogenetic analyses using mitochondrial DNA sequences revealed monophyletic clustering of the four species, plus evidence of natural hybridization between L. tigrinus and L. colocolo in areas of range overlap and discrete population subdivisions reflecting geographical isolation. Several commonly accepted subspecies partitions were affirmed for L. colocolo, but not for O. geoffroyi. The lack of geographical substructure in O. geoffroyi was recapitulated with the microsatellite data, as was the monophyletic clustering of O. guigna and O. geoffroyi individuals. L. tigrinus forms two phylogeographic clusters which correspond to L.t. oncilla (from Costa Rica) and L.t. guttula (from Brazil) and which have mitochondrial DNA (mtDNA) genetic distance estimates comparable to interspecific values between other ocelot lineage species. Using feline‐specific calibration rates for mitochondrial DNA mutation rates, we estimated that extant lineages of O. guigna diverged 0.4 million years ago (Ma), compared with 1.7 Ma for L. colocolo, 2.0 Ma for O. geoffroyi, and 3.7 Ma for L. tigrinus.


American Journal of Primatology | 1999

Phylogenetic relationships of the callitrichinae (Platyrrhini, primates) based on β2-microglobulin DNA sequences

Flavio Canavez; Miguel A. M. Moreira; Faiçal Simon; Peter Parham; Héctor N. Seuánez

The phylogenetic relationships of callitrichine primates have been determined by DNA sequence analyses of exons 1, 2, and 3 of the β2‐microglobulin gene. Parsimony, distance, and maximum likelihood analyses of ca. 900 base pairs of 21 taxa, representing all callitrichine genera, indicated that Saguinus was the most basal offshoot. Within Saguinus, S. fuscicollis appeared as the first divergent lineage followed by an unresolved trichotomy formed by S. mystax/S. imperator, S. midas/S. bicolor, and S. oedipus. A second callitrichine lineage was formed by Leontopithecus; each of the three species studied showed identical nucleotide sequences. Callimico appeared as the sister taxon of Callithrix/Cebuella. Genetic distances within this latter group were very small, although a stronger association between Cebuella and species of the Callithrix argentata group was observed. The inclusion of Cebuella in the genus Callithrix is suggested. These studies indicated that tamarins are more plesiomorphic than marmosets in agreement with the phyletic dwarfism hypothesis. Am. J. Primatol. 48:225–236, 1999.


Chromosoma | 2003

Chromosome painting in Callicebus lugens, the species with the lowest diploid number (2n=16) known in primates

Roscoe Stanyon; Cibele R. Bonvicino; M. Svartman; Héctor N. Seuánez

Cytogenetic studies have shown that New World primates are karyologically diverse and highly derived. The genus Callicebus is the best example of this karyological diversity, with diploid numbers ranging from 2n=50 to 2n=16. We report on Callicebus lugens, which has the lowest diploid number (2n=16) yet found in the primate order and represents a striking example of extreme karyotypic shuffling. To better understand the genomic rearrangements that have resulted in this extremely low diploid number, we mapped chromosome homologies between C. lugens and humans by in situ hybridization. The total number of hybridization signals was 42, excluding the Y chromosome, with a total of 34 syntenic associations not found in humans. This species has one of the most derived karyotypes among the Platyrrhini. Fusion has been the predominant mode of karyological evolution, although fissions and inversions have also transformed the C. lugens karyotype. Remarkably in such a highly rearranged karyotype, the synteny of 11 human chromosomes (4, 5, 9, 12, 13, 14, 17, 18, 20, 21, and X) was maintained intact, even if most of these human-homologous gene clusters were translocated. Other human syntenies, such as homologues to human chromosomes 10 and 16, were highly fragmented. Comparisons of the C. lugens-human homology map with those of other New World primates have not yet helped establish a phylogenic arrangement between congeneric species or link Callicebus with any other genus.

Collaboration


Dive into the Héctor N. Seuánez's collaboration.

Top Co-Authors

Avatar

Miguel A. M. Moreira

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen J. O'Brien

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar

Marcelo A. Soares

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Fernando Regla Vargas

Universidade Federal do Estado do Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Esmeralda A. Soares

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Ilana Zalcberg

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Rocio Hassan

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert N. Menezes

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge