Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hedia Chagraoui is active.

Publication


Featured researches published by Hedia Chagraoui.


Cancer Research | 2005

Role for the Nuclear Factor κB Pathway in Transforming Growth Factor-β1 Production in Idiopathic Myelofibrosis: Possible Relationship with FK506 Binding Protein 51 Overexpression

Emiko Komura; Carole Tonetti; Virginie Penard-Lacronique; Hedia Chagraoui; Catherine Lacout; Jean Pierre LeCouedic; Najet Debili; William Vainchenker; Stéphane Giraudier

The release of transforming growth factor-beta1 (TGF-beta1) in the bone marrow microenvironment is one of the main mechanisms leading to myelofibrosis in murine models and probably in the human idiopathic myelofibrosis (IMF). The regulation of TGF-beta1 synthesis is poorly known but seems regulated by nuclear factor kappaB (NF-kappaB). We previously described the overexpression of an immunophilin, FK506 binding protein 51 (FKBP51), in IMF megakaryocytes. Gel shift and gene assays show that FKBP51s overexpression in a factor-dependent hematopoietic cell line, induces a sustained NF-kappaB activation after cytokine deprivation. This activation correlates with a low level of IkappaBalpha. A spontaneous activation of NF-kappaB was also detected in proliferating megakaryocytes and in circulating CD34(+) patient cells. In normal cells, NF-kappaB activation was only detected after cytokine treatment. The expression of an NF-kappaB superrepressor in FKBP51 overexpressing cells and in derived megakaryocytes from CD34(+) of IMF patients revealed that NF-kappaB activation was not involved in the resistance to apoptosis after cytokine deprivation of these cells but in TGF-beta1 secretion. These results highlight the importance of NF-kappaBs activation in the fibrosis development of this disease. They also suggest that FKBP51s overexpression in IMF cells could play an important role in the pathogenesis of this myeloproliferative disorder.


Experimental Hematology | 2003

Spontaneous STAT5 activation induces growth factor independence in idiopathic myelofibrosis: Possible relationship with FKBP51 overexpression

Emiko Komura; Hedia Chagraoui; Véronique Mansat de Mas; Benoit Blanchet; Paulo De Sepulveda; Frédéric Larbret; Jérôme Larghero; Michel Tulliez; Najet Debili; William Vainchenker; Stéphane Giraudier

Spontaneous growth of megakaryocyte progenitors is one of the biologic hallmarks of idiopathic myelofibrosis (IMF). The molecular mechanisms underlying this hypersensitivity to cytokines are poorly understood. Using a differential display approach, we previously observed FK506 binding protein 51 (FKBP51) overexpression in pathologic megakaryocytes from IMF. Using an FKBP51-overexpressing cell line, we found sustained STAT5 activation associated with JAK2 phosphorylation. We subsequently tested whether this transcription factor was activated in patient samples. We detected a STAT5 nuclear translocation and activation in spontaneously grown megakaryocytes and in circulating CD34(+) cells from the majority of patients studied. The biologic role of this JAK/STAT pathway activation was demonstrated by inhibiting both the anti-apoptotic phenotype mediated by FKBP51 overexpression in UT7 cells and the spontaneous megakaryocytic growth by addition in culture of the JAK2 inhibitor AG490 or overexpression of a STAT5b dominant negative or SOCS-1. These results demonstrate that a constitutive STAT5 activation in IMF is indispensable for spontaneous growth of megakaryocytes. They also suggest that FKBP51 overexpression could be involved in STAT5 activation in IMF cells and in subsequent abnormal growth.


Blood | 2008

Differential use of SCL/TAL-1 DNA-binding domain in developmental hematopoiesis.

Mira T. Kassouf; Hedia Chagraoui; Paresh Vyas; Catherine Porcher

Dissecting the molecular mechanisms used by developmental regulators is essential to understand tissue specification/differentiation. SCL/TAL-1 is a basic helix-loop-helix transcription factor absolutely critical for hematopoietic stem/progenitor cell specification and lineage maturation. Using in vitro and forced expression experimental systems, we previously suggested that SCL might have DNA-binding-independent functions. Here, to assess the requirements for SCL DNA-binding activity in vivo, we examined hematopoietic development in mice carrying a germline DNA-binding mutation. Remarkably, in contrast to complete absence of hematopoiesis and early lethality in scl-null embryos, specification of hematopoietic cells occurred in homozygous mutant embryos, indicating that direct DNA binding is dispensable for this process. Lethality was forestalled to later in development, although some mice survived to adulthood. Anemia was documented throughout development and in adulthood. Cellular and molecular studies showed requirements for SCL direct DNA binding in red cell maturation and indicated that scl expression is positively autoregulated in terminally differentiating erythroid cells. Thus, different mechanisms of SCLs action predominate depending on the developmental/cellular context: indirect DNA binding activities and/or sequestration of other nuclear regulators are sufficient in specification processes, whereas direct DNA binding functions with transcriptional autoregulation are critically required in terminal maturation processes.


Experimental Hematology | 2003

Expression of osteoprotegerin mRNA and protein in murine megakaryocytes.

Hedia Chagraoui; Siham Sabri; Claude Capron; Jean-Luc Villeval; William Vainchenker; Françoise Wendling

OBJECTIVE Osteoprotegerin (OPG) is a soluble member of the tumor necrosis factor receptor superfamily critically involved in the regulation of bone resorption. Within the bone microenvironment, OPG is abundantly produced by osteoblast/stromal cells, and its expression is regulated by transforming growth factor-beta(1) (TGF-beta(1)). However, OPG expression and regulation in primary hematopoietic cells have not been fully investigated. MATERIALS AND METHODS Opg mRNA was studied in murine hematopoietic cells by semiquantitative reverse transcriptase-polymerase chain reaction. The OPG protein was identified by immunofluorescence labeling and secretion was assessed by enzyme-linked immunosorbent assay. RESULTS Opg transcripts were detected in platelets, megakaryocytes (MK), monocytes, and B lymphocytes, but not in erythroblasts, neutrophils, and T lymphocytes. Mature MK and proplatelets exhibited strong immunostaining for OPG outside the storage alpha-granules, and secretion was detected in the conditioned medium. To analyze whether opg transcription in MK was influenced by TGF-beta(1), the opg/GpIIb mRNA ratio was compared in cultured MK derived from TGF-beta(1) null mutants and wild-type littermates without or after the addition of bioactive TGF-beta(1). No difference was seen, indicating that opg expression in MK was not modulated by TGF-beta(1). However, mRNA levels were increased when thrombopoietin was present in the culture medium, suggesting that MK maturation was correlated with enhanced opg expression. CONCLUSIONS With these results we document for the first time that murine MK and platelets express OPG. This suggests a novel role for MK in bone homeostasis, in addition to its role in vascular homeostasis.


Blood | 2011

SCL-mediated regulation of the cell cycle regulator p21 is critical for murine megakaryopoiesis

Hedia Chagraoui; Mira T. Kassouf; Sreemoti Banerjee; Nicolas Goardon; Kevin D. Clark; Ann Atzberger; Andrew C. Pearce; Radek C. Skoda; David J. P. Ferguson; Steve P. Watson; Paresh Vyas; Catherine Porcher

Megakaryopoiesis is a complex process that involves major cellular and nuclear changes and relies on controlled coordination of cellular proliferation and differentiation. These mechanisms are orchestrated in part by transcriptional regulators. The key hematopoietic transcription factor stem cell leukemia (SCL)/TAL1 is required in early hematopoietic progenitors for specification of the megakaryocytic lineage. These early functions have, so far, prevented full investigation of its role in megakaryocyte development in loss-of-function studies. Here, we report that SCL critically controls terminal megakaryocyte maturation. In vivo deletion of Scl specifically in the megakaryocytic lineage affects all key attributes of megakaryocyte progenitors (MkPs), namely, proliferation, ploidization, cytoplasmic maturation, and platelet release. Genome-wide expression analysis reveals increased expression of the cell-cycle regulator p21 in Scl-deleted MkPs. Importantly, p21 knockdown-mediated rescue of Scl-mutant MkPs shows full restoration of cell-cycle progression and partial rescue of the nuclear and cytoplasmic maturation defects. Therefore, SCL-mediated transcriptional control of p21 is essential for terminal maturation of MkPs. Our study provides a mechanistic link between a major hematopoietic transcriptional regulator, cell-cycle progression, and megakaryocytic differentiation.


Blood | 2010

A major role of TGF-beta1 in the homing capacities of murine hematopoietic stem cell/progenitors.

Claude Capron; Catherine Lacout; Yann Lécluse; Valérie Jalbert; Hedia Chagraoui; Sabine Charrier; Anne Galy; Annelise Bennaceur-Griscelli; Elisabeth M. Cramer-Borde; William Vainchenker

Transforming growth factor-beta1 (TGF-beta1) is a pleiotropic cytokine with major in vitro effects on hematopoietic stem cells (HSCs) and lymphocyte development. Little is known about hematopoiesis from mice with constitutive TGF-beta1 inactivation largely because of important embryonic lethality and development of a lethal inflammatory disorder in TGF-beta1(-/-) pups, making these studies difficult. Here, we show that no sign of the inflammatory disorder was detectable in 8- to 10-day-old TGF-beta1(-/-) neonates as judged by both the number of T-activated and T-regulator cells in secondary lymphoid organs and the level of inflammatory cytokines in sera. After T-cell depletion, the inflammatory disease was not transplantable in recipient mice. Bone marrow cells from 8- to 10-day-old TGF-beta1(-/-) neonates showed strikingly impaired short- and long-term reconstitutive activity associated with a parallel decreased in vivo homing capacity of lineage negative (Lin(-)) cells. In addition an in vitro-reduced survival of immature progenitors (Lin(-) Kit(+) Sca(+)) was observed. Similar defects were found in liver cells from TGF-beta1(-/-) embryos on day 14 after vaginal plug. These data indicate that TGF-beta1 is a critical regulator for in vivo homeostasis of the HSCs, especially for their homing potential.


Journal of Immunology | 2006

Monocyte/Macrophage Dysfunctions Do Not Impair the Promotion of Myelofibrosis by High Levels of Thrombopoietin

Orianne Wagner-Ballon; Hedia Chagraoui; Eric Prina; Micheline Tulliez; Geneviève Milon; Hana Raslova; Jean-Luc Villeval; William Vainchenker; Stéphane Giraudier

Several lines of evidence indicate that the megakaryocyte/platelet lineage is crucial in myelofibrosis induction. The demonstration that NOD/SCID mice with functionally deficient monocytes do not develop fibrotic changes when exposed to thrombopoietin (TPO) also suggests an important role for monocyte/macrophages. However, in this animal model, the development of myelofibrosis is dependent on the level of TPO. This study was conducted to investigate whether NOD/SCID mice exposed to high TPO levels mediated by a retroviral vector would be refractory to the development of bone marrow fibrosis. We show that TPO and TGF-β1 in plasma from NOD/SCID and SCID mice engrafted with TPO-overexpressing hemopoietic cells reach levels similar to the ones reached in immunocompetent mice, and all animals develop a myeloproliferative disease associated with a dense myelofibrosis at 8 wk posttransplantation. Monocytes in NOD/SCID mice are functionally deficient to secrete cytokines such as IL-1α in response to stimuli, even under TPO expression. Surprisingly, the plasma of these mice displays high levels of IL-α, which was demonstrated to originate from platelets. Together, these data suggest that completely functional monocytes are not required to develop myelofibrosis and that platelets are able, under TPO stimulation, to synthesize inflammatory cytokines, which may be involved in the pathogenesis of myelofibrosis and osteosclerosis.


Blood | 2017

SCL/TAL1: a multifaceted regulator from blood development to disease

Catherine Porcher; Hedia Chagraoui; Maiken S. Kristiansen

SCL/TAL1 (stem cell leukemia/T-cell acute lymphoblastic leukemia [T-ALL] 1) is an essential transcription factor in normal and malignant hematopoiesis. It is required for specification of the blood program during development, adult hematopoietic stem cell survival and quiescence, and terminal maturation of select blood lineages. Following ectopic expression, SCL contributes to oncogenesis in T-ALL. Remarkably, SCLs activities are all mediated through nucleation of a core quaternary protein complex (SCL:E-protein:LMO1/2 [LIM domain only 1 or 2]:LDB1 [LIM domain-binding protein 1]) and dynamic recruitment of conserved combinatorial associations of additional regulators in a lineage- and stage-specific context. The finely tuned control of SCLs regulatory functions (lineage priming, activation, and repression of gene expression programs) provides insight into fundamental developmental and transcriptional mechanisms, and highlights mechanistic parallels between normal and oncogenic processes. Importantly, recent discoveries are paving the way to the development of innovative therapeutic opportunities in SCL+ T-ALL.


PLOS ONE | 2012

Establishment of an ES cell-derived murine megakaryocytic cell line, MKD1, with features of primary megakaryocyte progenitors.

Hedia Chagraoui; Catherine Porcher

Because of the scarcity of megakaryocytes in hematopoietic tissues, studying megakaryopoiesis heavily relies on the availability of appropriate cellular models. Here, we report the establishment of a new mouse embryonic stem (ES) cell-derived megakaryocytic cell line, MKD1. The cells are factor-dependent, their cell surface immunophenotype and gene expression profile closely resemble that of primary megakaryocyte progenitors (MkPs) and they further differentiate along the megakaryocyte lineage upon valproic acid treatment. At a functional level, we show that ablation of SCL expression, a transcription factor critical for MkP maturation, leads to gene expression alterations similar to that observed in primary, Scl-excised MkPs. Moreover, the cell line is amenable to biochemical and transcriptional analyses, as we report for GpVI, a direct target of SCL. Thus, the MKD1 cell line offers a pertinent experimental model to study the cellular and molecular mechanisms underlying MkP biology and more broadly megakaryopoiesis.


Blood | 2002

Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice.

Hedia Chagraoui; Emiko Komura; Micheline Tulliez; Stéphane Giraudier; William Vainchenker; Françoise Wendling

Collaboration


Dive into the Hedia Chagraoui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emiko Komura

Institut Gustave Roussy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Françoise Wendling

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge