Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hee Young Kang is active.

Publication


Featured researches published by Hee Young Kang.


Journal of Veterinary Science | 2016

Claudin-1, -2, -4, and -5: comparison of expression levels and distribution in equine tissues

Bonn Lee; Hee Young Kang; Dong Oh Lee; Changhwan Ahn; Eui-Bae Jeung

Claudins, which are known as transmembrane proteins play an essential role in tight junctions (TJs) to form physical barriers and regulate paracellular transportation. To understand equine diseases, it is helpful to measure the tissue-specific expression of TJs in horses. Major equine diseases such as colic and West Nile cause damage to TJs. In this study, the expression level and distribution of claudin-1, -2, -4, and -5 in eight tissues were assessed by Western blotting and immunohistochemistry methods. Claudin-1 was primarily identified in the lung, duodenum, and uterus, claudin-2 was evenly observed in equine tissues, claudin-4 was abundantly detected in the liver, kidney and uterus, and claudin-5 was strongly expressed in the lung, duodenum, ovary, and uterus, as determined by Western blotting method. The localization of equine claudins was observed by immunohistochemistry methods. These findings provide knowledge regarding the expression patterns and localization of equine claudins, as well as valuable information to understand tight junction-related diseases according to tissue specificity and function of claudins in horses.


Environmental Toxicology and Pharmacology | 2015

Establishment of a rapid drug screening system based on embryonic stem cells

Eui-Ju Hong; Yeoul Choi; Hyun Yang; Hee Young Kang; Changhwan Ahn; Eui-Bae Jeung

Embryonic stem (ES) cells have the capacity for self-renewal and differentiation into three germ layers following formation of embryonic bodies (EB). To investigate toxicity of pharmaceutical compounds, five toxic chemicals, indomethacin, dexamethasone, hydroxyurea, 5-fluorouracil, and cytosine arabinoside were applied in mouse ES cells during formation of EBs. Using microscopic evaluation, the size of EBs was reduced in a dose-dependent manner by treatment with pharmaceutical chemicals. While apoptosis-related proteins, cleaved caspase-3 and PARP, were decreased in compound-exposed EBs, necrosis-related protein (Hmgb1) was present in culture media of EBs, indicating that detection of Hmgb1 can result in activation of necrosis by pharmaceutical compounds. While pharmaceutical compounds impaired the differentiation of mES cells linked with spontaneous apoptotic cell death, it was determined that cytotoxic cell damage is necrosis-dependent in mES cells. In addition, an apoptotic transcript (Noxa mRNA) in toxicant-exposed EBs was decreased in parallel with apoptosis-related proteins. Following impairment of apoptosis, differentiation-related markers including un-differentiation (Sox2), endoderm (Hnf4), mesoderm (Bmp4), and ectoderm (Pax6) also fluctuated by treatment with pharmaceutical compounds. Taken together, the data imply that exposure to pharmaceutical compounds results in increased cell death hindering the spontaneous apoptosis of cells to undergo differentiation. Using both characteristics of ES cells like self-renewal or cellular pluripotency and potentials of ES cells for evaluation in toxicity of various compounds, the current study was conducted for establishment of a novel drug screening system beyond hidden virtues of the well-known chemicals.


Reproductive Toxicology | 2016

Inhibitory effect of progesterone during early embryonic development: Suppression of myocardial differentiation and calcium-related transcriptome by progesterone in mESCs: Progesterone disturb cardiac differentiation of mESCs through lower cytosolic Ca2+

Hee Young Kang; Young-Kwon Choi; Eui-Bae Jeung

Progesterone (PG) and its derivates are used in prevention of spontaneous miscarriage. However, some studies have reported that exposure to PG and its derivates during pregnancy can cause malformations and affect both blood pressure and the cardiovascular system. The effect of PG on cardiomyogenesis of mouse embryonic stem cells (mESCs) is not well known. Expression of Pgr mRNA showed an opposite pattern of beating-ratio during differentiation. PG treatment resulted in reduction of the beating ratio to 60.45±1.54% from 92.17±2.98% in normal differentiation, reduced transcripts of heart morphogenesis and Ca(2+) binding-related genes in the next generation sequencing data and significantly decreased expression levels of Ca(2+)/contraction-related genes including Ryr2, Calm2, Trpv2, and Mylk3, the intracellular Ca(2+) level, and the beating frequency. These results suggest that PG exerts inhibitory effects on differentiation of mESCs into functional cardiomyocytes.


International Journal of Environmental Research and Public Health | 2016

Effects of Octylphenol and Bisphenol A on the Metal Cation Transporter Channels of Mouse Placentas

Jae-Hwan Lee; Changhwan Ahn; Hee Young Kang; Eui-Ju Hong; Sang Hwan Hyun; Kyung-Chul Choi; Eui-Bae Jeung

Octylphenol (OP) and bisphenol A (BPA) are known as endocrine-disrupting chemicals (EDCs). During pregnancy, the expression of steroid hormone receptors is controlled by maternal and fetal nutrition. To evaluate the impact of EDCs during pregnancy, ethinyl estradiol (EE, 0.2 mg/kg/day), OP (50 mg/kg/day), and BPA (50 mg/kg/day) were administered to pregnant mice. The mRNA levels of TRPV6 (transient receptor potential cation channels in subfamily V, member 6) decreased significantly by EE and OP. The PMCA1 (ATPase, Ca++ transporting, plasma membrane 1) mRNA and protein levels decreased significantly by EE, OP, and BPA. CTR1 (solute carrier family 31, member 1) and ATP7A (ATPase, Cu++ transporting, alpha polypeptide) expression decreased significantly by EE, OP, and BPA. The mRNA levels of IREG1 (iron-regulated transporter, member 1) decreased significantly by EE. Hephaestin (HEPH) mRNA levels decreased significantly by EE, OP, and BPA, and protein levels decreased significantly by BPA. As a result of immunohistochemistry analysis, all cation transporter proteins were found in labyrinth of placenta. To confirm the cytosolic level of cations, levels of cation level in fetal serum were measured. EE, OP, and BPA significantly reduced serum calcium and copper levels, and iron levels were reduced by BPA. Taken together, some EDCs, such as OP and BPA, could modulate the calcium, copper, and iron ion-transporting channels during pregnancy. The fetus relies on the mother for ionic transportation, and, therefore, pregnant women should avoid exposure to cation-channel-disrupting chemicals.


Molecular Medicine Reports | 2015

Two faces of the estrogen metabolite 2-methoxyestradiol in vitro and in vivo

Ji‑Sun Lee; Yu‑Kyung Kim; Hyun Yang; Hee Young Kang; Changhwan Ahn; Eui Bae Jeung

2-Methoxyestradiol (2-ME), an endogenous metabolite of 17β-estradiol (E2), interacts with estrogen receptors (ERs) and microtubules, however, 2-ME has a low affinity for ERs. Furthermore, 2‑ME has been identified as a potential novel antitumor agent, combining its anti‑proliferative effects on a variety of tumor cell types with its anti‑angiogenic action. Therefore, 2‑ME is of interest due to its potential anticancer therapeutic effects. In the current study, the estrogenic effect of 2‑ME on CaBP‑9k, ERα, and progesterone receptor (PR) mRNA levels in the absence and presence of E2 and progesterone (P4) in in vivo and in vitro models was examined. In GH3 cells, the mRNA level of CaBP‑9k was induced in the E2 treatment group (concentration, 10‑9 M), and the expression of CaBP‑9k was also upregulated in the 2‑ME‑treated group (concentration, 10‑7 M). Uterine lactoferrin (Ltf) mRNA expression was also increased in the 2‑ME group [dose, 40 mg/kg body weight (BW)], which was comparable to the response with E2 (dose, 40 µg/kg BW) observed in mice. As inhibitors of ER and PR activity, ICI 182,780 and mifepristone (RU486) were observed to reverse the E2 or 2‑ME mediated increase of CaBP‑9k and Ltf mRNA expression. In addition, it was found that 2‑ME significantly decreased the levels of ERα and increased PR transcripts. Consistent with the in vitro results, the mRNA levels revealed decreased ERα and increased PR in in vivo treatment of E2 and 2‑ME. These findings demonstrate that the expression of estrogenic markers, CaBP‑9k and Ltf, is regulated by 2‑ME in in vitro and in vivo models, therefore, estrogenic activi-ties of 2-ME may be increased in females during the estrous cycle via the ER and/or PR-mediated signaling pathway.


Reproductive Toxicology | 2017

Advanced developmental toxicity test method based on embryoid body’s area

Hee Young Kang; Young-Kwon Choi; Na Rae Jo; Jae-Hwan Lee; Changhwan Ahn; Il Young Ahn; Tae Sung Kim; Ki-Suk Kim; Kyung-Chul Choi; Jong Kwon Lee; Sung Duck Lee; Eui-Bae Jeung

Embryonic stem cell test (EST) evaluates the embryotoxic potential of substances and measures the half inhibition in viability of mouse embryonic stem cells (ESCs), fibroblasts (3T3 cells) and in cardiac differentiation of ESC. In this study, we suggest the developmental toxicity test method (termed EBT) applying area of embryoid bodies (EBs) instead of cardiac differentiation of EST. In the assessment of 21 substances, EB area was logarithmically decreased in dose-dependent manner. Decline in EB area resulted in decrease of beating ratio during differentiation of ESCs. In classification by the EBT-based prediction model reflecting decline in cell viability and EB area, toxicity for 21 chemicals showed 90.5% accuracy. In the results of next generation sequencing, reduction in EB area resulted from cell cycle arrest mediated by HDAC2 and CDKN2A. Conclusively, EBT is advanced and is a useful tool to assess and classify various embryotoxicants in a short time with less effort.


Oncology Letters | 2017

Effect of 2‑methoxyestradiol on SK‑LMS‑1 uterine leiomyosarcoma cells

Ji‑Sun Lee; Changhwan Ahn; Hee Young Kang; Eui Bae Jeung

An endogenous metabolite of 17β-estradiol, 2-methoxyestradiol (2-ME), has affinity for estrogen receptors. This compound was reported to be a promising antitumor drug due to its anti-proliferative effects on a wide range of tumor cell types. Numerous previous studies have been performed to evaluate the cytotoxic effects of 2-ME on tumor cell lines in following the induction of G2/M cell cycle arrest and subsequent apoptosis. Uterine leiomyosarcoma (ULMS) is a relatively rare malignant smooth muscle cell tumor that develops in the uterus muscle layer. The aim of the present study was to examine the in vitro anti-proliferative effects of 2-ME on SK-LMS-1 human leiomyosarcoma cells. An MTT assay, terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling assay, immunocytochemistry and western blotting were performed. A high concentration (10−5 M) of 2-ME was identified to have an anti-proliferative effect on SK-LMS-1 cells. Additionally, expression of the apoptosis markers was upregulated in the presence of 10−5 M 2-ME, according to western blot analysis. Furthermore, the expression level of an autophagic marker, light chain 3, was increased by 2-ME treatment in a dose-dependent manner. This was associated with cell death induced by the upregulation of phosphorylated extracellular-signal-regulated kinase 1/2 signaling pathway. The results of the present study demonstrated that 2-ME, which is used as a therapeutic agent for treating solid tumors, exhibits apoptotic and anti-proliferative effects depending on the dose. Therefore, 2-ME may be a potential therapeutic reagent for human ULMS, but the appropriate dose of this compound should be carefully selected.


International Journal of Environmental Research and Public Health | 2017

Parabens Accelerate Ovarian Dysfunction in a 4-Vinylcyclohexene Diepoxide-Induced Ovarian Failure Model

Jae-Hwan Lee; Myeongho Lee; Changhwan Ahn; Hee Young Kang; Dinh Nam Tran; Eui-Bae Jeung

Parabens are widely used preservatives in basic necessities such as cosmetic and pharmaceutical products. In previous studies, xenoestrogenic actions of parabens were reported in an immature rat model and a rat pituitary cell line (GH3 cells). The relationship between parabens and ovarian failure has not been described. In the present study, the influence of parabens on ovarian folliculogenesis and steroidogenesis was investigated. A disruptor of ovarian small pre-antral follicles, 4-vinylcyclohexene diepoxide (VCD, 40 mg/kg), was used to induce premature ovarian failure (POF). Methylparaben (MP, 100 mg/kg), propylparaben (PP, 100 mg/kg), and butylparaben (BP, 100 mg/kg) dissolved in corn oil were treated in female 8-week-old Sprague-Dawley rat for 5 weeks. Estrus cycle status was checked daily by vaginal smear test. Ovarian follicle development and steroid synthesis were investigated through real-time PCR and histological analyses. Diestrus phases in the VCD, PP, and BP groups were longer than that in the vehicle group. VCD significantly decreased mRNA level of folliculogenesis-related genes (Foxl2, Kitl and Amh). All parabens significantly increased the Amh mRNA level but unchanged Foxl2 and Kitlg acting in primordial follicles. VCD and MP slightly increased Star and Cyp11a1 levels, which are related to an initial step in steroidogenesis. VCD and parabens induced an increase in FSH levels in serum and significantly decreased the total number of follicles. Increased FSH implies impairment in ovarian function due to VCD or parabens. These results suggest that VCD may suppress both formation and development of follicles. In particular, combined administration of VCD and parabens accelerated inhibition of the follicle-developmental process through elevated AMH level in small antral follicles.


Reproductive Sciences | 2016

The Regulation of Fatty Acid Oxidation in Human Preeclampsia

Eun-Kyeong Shin; Hee Young Kang; Hyun Yang; Eui-Man Jung; Eui-Bae Jeung

Preeclampsia (PE) is a pregnancy disorder characterized by high blood pressure, placental oxidative stress, and proteinuria. In a GeneFishing experiment using human preeclamptic placenta, expression of acyl-coenzyme A dehydrogenase very long chain (ACADVL), which is involved in fatty acid β-oxidation (FAO), was detected. To investigate the correlation between PE and FAO, this study subjected in vitro BeWo cells and in vivo pregnant mice to oxidative stress induced by hypoxia. Hypoxic condition, which oxygen supply is insufficient in cells and placenta, created a similar state to placental oxidative stress in PE, as evidenced by increased hypoxic (oxoguanine DNA glycosylase 1, hypoxia inducible factor 1 alpha subunit) and preeclamptic markers (soluble fms-like tyrosine kinase 1) both in vitro and in vivo. Increased expression of FAO-related genes (ACADVL, enoyl-coenzyme A hydratase/3-hydroxyacyl coenzyme A dehydrogenase) was observed in these models as well as in cases of preeclamptic preterm labor. In the in vivo liver model, messenger RNA expression of gluconeogenesis-related genes increased. Consequently, these results suggest that expression of FAO-related genes is regulated by hypoxic conditions and onset time of PE and affects maternal gluconeogenesis during pregnancy in patients with PE.


Molecular Medicine Reports | 2016

Expression of claudins, occludin, junction adhesion molecule A and zona occludens 1 in canine organs

Changhwan Ahn; Da‑Hye Shin; D.-Y. Lee; Su‑Myung Kang; Ju‑Hyung Seok; Hee Young Kang; Eui Bae Jeung

Tight junctions are the outermost structures of intercellular junctions and are classified as transmembrane proteins. These factors form selective permeability barriers between cells, act as paracellular transporters and regulate structural and functional polarity of cells. Although tight junctions have been previously studied, comparison of the transcriptional-translational levels of these molecules in canine organs remains to be investigated. In the present study, organ-specific expression of the tight junction proteins, claudin, occludin, junction adhesion molecule A and zona occludens 1 was examined in the canine duodenum, lung, liver and kidney. Results of immunohistochemistry analysis demonstrated that the tight junctions were localized in intestinal villi and glands of the duodenum, bronchiolar epithelia and alveolar walls of the lung, endometrium and myometrium of the hepatocytes, and the distal tubules and glomeruli of the kidney. These results suggest that tight junctions are differently expressed in organs, and therefore may be involved in organ-specific functions to maintain physiological homeostasis.

Collaboration


Dive into the Hee Young Kang's collaboration.

Top Co-Authors

Avatar

Eui-Bae Jeung

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Changhwan Ahn

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Jae-Hwan Lee

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Eui Bae Jeung

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Eui-Ju Hong

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Eui-Man Jung

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Hyun Yang

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Jin Yong An

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Kyung-Chul Choi

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Young-Kwon Choi

Chungbuk National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge