Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heebal Kim is active.

Publication


Featured researches published by Heebal Kim.


Science | 2014

Comparative genomics reveals insights into avian genome evolution and adaptation

Guojie Zhang; Cai Li; Qiye Li; Bo Li; Denis M. Larkin; Chul Hee Lee; Jay F. Storz; Agostinho Antunes; Matthew J. Greenwold; Robert W. Meredith; Qi Zhou; Luohao Xu; Zongji Wang; Pei Zhang; Haofu Hu; Wei Yang; Jiang Hu; Jin Xiao; Zhikai Yang; Yang Liu; Qiaolin Xie; Hao Yu; Jinmin Lian; Ping Wen; Fang Zhang; Hui Li; Yongli Zeng; Zijun Xiong; Shiping Liu; Zhiyong Huang

Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.


PLOS Biology | 2010

Multi-platform next-generation sequencing of the domestic Turkey (Meleagris gallopavo): Genome assembly and analysis

Rami A. Dalloul; Julie A Long; Aleksey V. Zimin; Luqman Aslam; Kathryn Beal; Le Ann Blomberg; Pascal Bouffard; David W. Burt; Oswald Crasta; R.P.M.A. Crooijmans; Kristal L. Cooper; Roger A. Coulombe; Supriyo De; Mary E. Delany; Jerry B. Dodgson; Jennifer J Dong; Clive Evans; Karin M. Frederickson; Paul Flicek; Liliana Florea; Otto Folkerts; M.A.M. Groenen; Tim Harkins; Javier Herrero; Steve Hoffmann; Hendrik-Jan Megens; Andrew Jiang; Pieter J. de Jong; Peter K. Kaiser; Heebal Kim

The combined application of next-generation sequencing platforms has provided an economical approach to unlocking the potential of the turkey genome.


Nature Genetics | 2013

The duck genome and transcriptome provide insight into an avian influenza virus reservoir species

Yinhua Huang; Yingrui Li; David W. Burt; Hualan Chen; Yong Zhang; Wubin Qian; Heebal Kim; Shangquan Gan; Yiqiang Zhao; Jianwen Li; Kang Yi; Huapeng Feng; Pengyang Zhu; Bo Li; Qiuyue Liu; Suan Fairley; Katharine E. Magor; Zhenlin Du; Xiaoxiang Hu; Laurie Goodman; Hakim Tafer; Alain Vignal; Taeheon Lee; Kyu-Won Kim; Zheya Sheng; Yang An; Steve Searle; Javier Herrero; M.A.M. Groenen; Richard P.M.A. Crooijmans

The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A viruses. We present the duck genome sequence and perform deep transcriptome analyses to investigate immune-related genes. Our data indicate that the duck possesses a contractive immune gene repertoire, as in chicken and zebra finch, and this repertoire has been shaped through lineage-specific duplications. We identify genes that are responsive to influenza A viruses using the lung transcriptomes of control ducks and ones that were infected with either a highly pathogenic (A/duck/Hubei/49/05) or a weakly pathogenic (A/goose/Hubei/65/05) H5N1 virus. Further, we show how the ducks defense mechanisms against influenza infection have been optimized through the diversification of its β-defensin and butyrophilin-like repertoires. These analyses, in combination with the genomic and transcriptomic data, provide a resource for characterizing the interaction between host and influenza viruses.


Journal of Bacteriology | 2011

Complete Genome Sequence of Bifidobacterium longum subsp. longum KACC 91563

Jun-Sang Ham; Taeheon Lee; Mi-Jeong Byun; Kyung-Tae Lee; Min-Kyung Kim; Gi-Sung Han; Seok-Geun Jeong; Mi-Hwa Oh; Dong-Hun Kim; Heebal Kim

Bifidobacterium longum strains predominate in the colonic microbiota of breast-fed infants. Here we report the complete genome sequence of B. longum subsp. longum KACC 91563, isolated from feces of neonates. A single circular chromosome of 2,385,301 bp contains 1,980 protein-coding genes, 56 tRNA genes, and 3 rRNA operons.


Genome Biology | 2015

Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project

Leif Andersson; Alan Archibald; C. D. K. Bottema; Rudiger Brauning; Shane C. Burgess; Dave Burt; E. Casas; Hans H. Cheng; Laura Clarke; Christine Couldrey; Brian P. Dalrymple; Christine G. Elsik; Sylvain Foissac; Elisabetta Giuffra; M.A.M. Groenen; Ben J. Hayes; LuSheng S Huang; Hassan Khatib; James W. Kijas; Heebal Kim; Joan K. Lunney; Fiona M. McCarthy; J. C. McEwan; Stephen S. Moore; Bindu Nanduri; Cedric Notredame; Yniv Palti; Graham Plastow; James M. Reecy; G. A. Rohrer

We describe the organization of a nascent international effort, the Functional Annotation of Animal Genomes (FAANG) project, whose aim is to produce comprehensive maps of functional elements in the genomes of domesticated animal species.


Biology of Reproduction | 2008

Reproduction of Wild Birds via Interspecies Germ Cell Transplantation

Seok Jin Kang; Jin Won Choi; Sun Young Kim; Kyung Je Park; Tae Min Kim; Young Mok Lee; Heebal Kim; Jeong Mook Lim; Jae Yong Han

Abstract The present study was conducted to apply an interspecies germ cell transfer technique to wild bird reproduction. Pheasant (Phasianus colchicus) primordial germ cells (PGCs) retrieved from the gonads of 7-day-old embryos were transferred to the bloodstream of 2.5-day-old chicken (Gallus gallus) embryos. Pheasant-to-chicken germline chimeras hatched from the recipient embryos, and 10 pheasants were derived from testcross reproduction of the male chimeras with female pheasants. Gonadal migration of the transferred PGCs, their involvement in spermatogenesis, and production of chimeric semen were confirmed. The phenotype of pheasant progenies derived from the interspecies transfer was identical to that of wild pheasants. The average efficiency of reproduction estimated from the percentage of pheasants to total progenies was 17.5%. In conclusion, interspecies germ cell transfer into a developing embryo can be used for wild bird reproduction, and this reproductive technology may be applicable in conserving endangered bird species..


The FASEB Journal | 2008

Generation of transgenic quail through germ cell-mediated germline transmission

Sang Su Shin; Tae Min Kim; Sunyoung Kim; Tae Wan Kim; Hee Won Seo; Seul Ki Lee; Se Chang Kwon; Gwan Sun Lee; Heebal Kim; Jeong Mook Lim; Jae Yong Han

Here, we describe the production of transgenic quail via a germline transmission system using postmigratory gonadal primordial germ cells (gPGCs). gPGCs retrieved from the embryonic gonads of 5‐day‐old birds were transduced with a lentiviral vector and subsequently transferred into recipient embryos. Testcross and genetic analyses revealed that among three germline chimeric G0 quail, one male produced transgenic offspring;of 310 hatchlings from the transgenic germline chimera, 24 were identified as donor‐derived offspring, and 6 were transgenic (6/310, 1.9%). Conventional transgenesis using stage × blastodermal embryos was also conducted, but the efficiency of transgenesis was similar between the two systems (<1.6 vs. 1.9% for the conventional and gPGC‐mediated systems, respectively). However, substantial advantages can be gained from gPGC‐mediated method in that it enables an induced germline modification, whereas direct retroviral transfer to stage X embryos causes mosaic integration. The use of gonadal PGCs for transgenesis may lead to the production of bioreactors.—Shin, S. S., Kim, T. M., Kim, S. Y., Kim, T. W., Seo, H. W., Lee, S. K., Kwon, S. C., Lee, G. S., Kim, H., Lim, J. M., Han, J. Y. Generation of transgenic quail through germ cell‐mediated germline transmission. FASEB J. 22, 2435–2444 (2008)


Annals of Human Genetics | 2010

Joint identification of multiple genetic variants via elastic-net variable selection in a genome-wide association analysis.

Seoae Cho; Kyunga Kim; Young-Jin Kim; Jong-Keuk Lee; Yoon Shin Cho; Jong-Young Lee; Bok-Ghee Han; Heebal Kim; Jurg Ott; Taesung Park

Unraveling the genetic background of common complex traits is a major goal in modern genetics. In recent years, genome‐wide association (GWA) studies have been conducted with large‐scale data sets of genetic variants. Most of those studies have relied on single‐marker approaches that identify single genetic factors individually and can be limited in considering fully the joint effects of multiple genetic factors on complex traits. Joint identification of multiple genetic factors would be more powerful and would provide better prediction on complex traits since it utilizes combined information across variants. Here we propose a multi‐stage approach for GWA analysis: (1) prescreening, (2) joint identification of putative SNPs based on elastic‐net variable selection, and (3) empirical replication using bootstrap samples. Our approach enables an efficient joint search for genetic associations in GWA analysis. The suggested empirical replication method can be beneficial in GWA studies because one can avoid a costly, independent replication study while eliminating false‐positive associations and focusing on a smaller number of replicable variants. We applied the proposed approach to a GWA analysis, and jointly identified 129 genetic variants having an association with adult height in a Korean population.


Applied and Environmental Microbiology | 2012

Genome Scanning for Conditionally Essential Genes in Salmonella enterica Serotype Typhimurium

Anita Khatiwara; Tieshan Jiang; Samsun Sung; Turki M. Dawoud; Jeong Nam Kim; Dhruva Bhattacharya; Heebal Kim; Steven C. Ricke; Young Min Kwon

ABSTRACT As more whole-genome sequences become available, there is an increasing demand for high-throughput methods that link genes to phenotypes, facilitating discovery of new gene functions. In this study, we describe a new version of the Tn-seq method involving a modified EZ:Tn5 transposon for genome-wide and quantitative mapping of all insertions in a complex mutant library utilizing massively parallel Illumina sequencing. This Tn-seq method was applied to a genome-saturating Salmonella enterica serotype Typhimurium mutant library recovered from selection under 3 different in vitro growth conditions (diluted Luria-Bertani [LB] medium, LB medium plus bile acid, and LB medium at 42°C), mimicking some aspects of host stressors. We identified an overlapping set of 105 protein-coding genes in S. Typhimurium that are conditionally essential under at least one of the above selective conditions. Competition assays using 4 deletion mutants (pyrD, glnL, recD, and STM14_5307) confirmed the phenotypes predicted by Tn-seq data, validating the utility of this approach in discovering new gene functions. With continuously increasing sequencing capacity of next generation sequencing technologies, this robust Tn-seq method will aid in revealing unexplored genetic determinants and the underlying mechanisms of various biological processes in Salmonella and the other approximately 70 bacterial species for which EZ:Tn5 mutagenesis has been established.


PLOS ONE | 2013

Primed Pluripotent Cell Lines Derived from Various Embryonic Origins and Somatic Cells in Pig

Jin-Kyu Park; Hye-Sun Kim; Kyung-Jun Uh; Kwang-Hwan Choi; Hyeongmin Kim; Taeheon Lee; Byung-Chul Yang; Hyun-Jong Kim; Hakhyun Ka; Heebal Kim; Chang-Kyu Lee

Since pluripotent embryonic stem cell (ESC) lines were first derived from the mouse, tremendous efforts have been made to establish ESC lines in several domestic species including the pig; however, authentic porcine ESCs have not yet been established. It has proven difficult to maintain an ESC-like state in pluripotent porcine cell lines due to the frequent occurrence of spontaneous differentiation into an epiblast stem cell (EpiSC)-like state during culture. We have been able to derive EpiSC-like porcine ESC (pESC) lines from blastocyst stage porcine embryos of various origins, including in vitro fertilized (IVF), in vivo derived, IVF aggregated, and parthenogenetic embryos. In addition, we have generated induced pluripotent stem cells (piPSCs) via plasmid transfection of reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) into porcine fibroblast cells. In this study, we analyzed characteristics such as marker expression, pluripotency and the X chromosome inactivation status in female of our EpiSC-like pESC lines along with our piPSC line. Our results show that these cell lines demonstrate the expression of genes associated with the Activin/Nodal and FGF2 pathways along with the expression of pluripotent markers Oct4, Sox2, Nanog, SSEA4, TRA 1–60 and TRA 1–81. Furthermore all of these cell lines showed in vitro differentiation potential, the X chromosome inactivation in female and a normal karyotype. Here we suggest that the porcine species undergoes reprogramming into a primed state during the establishment of pluripotent stem cell lines.

Collaboration


Dive into the Heebal Kim's collaboration.

Top Co-Authors

Avatar

Seoae Cho

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jae Yong Han

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Woori Kwak

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Samsun Sung

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jaemin Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Sook Hee Yoon

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Taeheon Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hak-Kyo Lee

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Minseok Seo

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Kwondo Kim

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge