Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heekyoung Yang is active.

Publication


Featured researches published by Heekyoung Yang.


Genomics | 2014

Patterns of somatic alterations between matched primary and metastatic colorectal tumors characterized by whole-genome sequencing.

Tao Xie; Yong Beom Cho; Kai Wang; Donghui Huang; Hye Kyung Hong; Yoon-La Choi; Young Hyeh Ko; Do-Hyun Nam; Juyoun Jin; Heekyoung Yang; Julio Fernandez; Shibing Deng; Paul A. Rejto; Woo Yong Lee; Mao Mao

Colorectal cancer (CRC) patients have poor prognosis after formation of distant metastasis. Understanding the molecular mechanisms by which genetic changes facilitate metastasis is critical for the development of targeted therapeutic strategies aimed at controlling disease progression while minimizing toxic side effects. A comprehensive portrait of somatic alterations in CRC and the changes between primary and metastatic tumors has yet to be developed. We performed whole genome sequencing of two primary CRC tumors and their matched liver metastases. By comparing to matched germline DNA, we catalogued somatic alterations at multiple scales, including single nucleotide variations, small insertions and deletions, copy number aberrations and structural variations in both the primary and matched metastasis. We found that the majority of these somatic alterations are present in both sites. Despite the overall similarity, several de novo alterations in the metastases were predicted to be deleterious, in genes including FBXW7, DCLK1 and FAT2, which might contribute to the initiation and progression of distant metastasis. Through careful examination of the mutation prevalence among tumor cells at each site, we also proposed distinct clonal evolution patterns between primary and metastatic tumors in the two cases. These results suggest that somatic alterations may play an important role in driving the development of colorectal cancer metastasis and present challenges and opportunities when considering the choice of treatment.


PLOS ONE | 2012

Trans-Differentiation of Neural Stem Cells: A Therapeutic Mechanism Against the Radiation Induced Brain Damage

Kyeung Min Joo; Juyoun Jin; Bong Gu Kang; Se Jeong Lee; Kang Ho Kim; Heekyoung Yang; Young-Ae Lee; Yu Jin Cho; Yong-Seok Im; Dong-Sup Lee; Do-Hoon Lim; Dong Hyun Kim; Hong-Duck Um; Sang-Hun Lee; Jung-II Lee; Do-Hyun Nam

Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs) would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases.


Biochemical and Biophysical Research Communications | 2011

Inhibition of checkpoint kinase 1 sensitizes lung cancer brain metastases to radiotherapy.

Heekyoung Yang; Su Jin Yoon; Juyoun Jin; Seung Ho Choi; Ho Jun Seol; Jung-Il Lee; Do-Hyun Nam; Hae Yong Yoo

The most important therapeutic tool in brain metastasis is radiation therapy. However, resistance to radiation is a possible cause of recurrence or treatment failure. Recently, signal pathways about DNA damage checkpoints after irradiation have been noticed. We investigated the radiosensitivity can be enhanced with treatment of Chk1 inhibitor, AZD7762 in lung cancer cell lines and xenograft models of lung cancer brain metastasis. Clonogenic survival assays showed enhancement of radiosensitivity with AZD7762 after irradiation of various doses. AZD7762 increased ATR/ATM-mediated Chk1 phosphorylation and stabilized Cdc25A, suppressed cyclin A expression in lung cancer cell lines. In xenograft models of lung cancer (PC14PE6) brain metastasis, AZD7762 significantly prolonged the median survival time in response to radiation. Depletion of Chk1 using shRNA also showed an enhancement of sensitivity to radiation in PC14PE6 cells. The results of this study support that Chk1 can be a good target for enhancement of radiosensitivity.


Nature Chemical Biology | 2014

Chemical inhibition of prometastatic lysyl-tRNA synthetase–laminin receptor interaction

Dae Gyu Kim; Jin Young Lee; Nam Hoon Kwon; Pengfei Fang; Qian Zhang; Jing Wang; Nicolas L. Young; Min Guo; Hye Young Cho; Ameeq Ul Mushtaq; Young Ho Jeon; Jin Woo Choi; Jung Min Han; Ho Woong Kang; Jae Eun Joo; Youn Hur; Wonyoung Kang; Heekyoung Yang; Do Hyun Nam; Mi‑Sook Lee; Jung Weon Lee; Eun Sook Kim; Aree Moon; Kibom Kim; Doyeun Kim; Eun Joo Kang; Youngji Moon; Kyung Hee Rhee; Byung Woo Han; Jee Sun Yang

Lysyl-tRNA synthetase (KRS), a protein synthesis enzyme in the cytosol, relocates to the plasma membrane after a laminin signal and stabilizes a 67-kDa laminin receptor (67LR) that is implicated in cancer metastasis; however, its potential as an antimetastatic therapeutic target has not been explored. We found that the small compound BC-K-YH16899, which binds KRS, impinged on the interaction of KRS with 67LR and suppressed metastasis in three different mouse models. The compound inhibited the KRS-67LR interaction in two ways. First, it directly blocked the association between KRS and 67LR. Second, it suppressed the dynamic movement of the N-terminal extension of KRS and reduced membrane localization of KRS. However, it did not affect the catalytic activity of KRS. Our results suggest that specific modulation of a cancer-related KRS-67LR interaction may offer a way to control metastasis while avoiding the toxicities associated with inhibition of the normal functions of KRS.


BioMed Research International | 2014

KML001, a Telomere-Targeting Drug, Sensitizes Glioblastoma Cells to Temozolomide Chemotherapy and Radiotherapy through DNA Damage and Apoptosis

Seon Rang Woo; Yunhee Ham; Wonyoung Kang; Heekyoung Yang; Sujong Kim; Juyoun Jin; Kyeung Min Joo; Do-Hyun Nam

Standard treatment for glioblastoma comprises surgical resection, chemotherapy with temozolomide, and radiotherapy. Nevertheless, majority of glioblastoma patients have recurrence from resistance to the cytotoxic conventional therapies. We examined combinational effects of KML001, an arsenic compound targeting telomeres of chromosomes with temozolomide or irradiation, in glioblastoma cell lines and xenograft models, to overcome the therapeutic limitation of chemoradiation therapy for glioblastoma. Although KML001 alone showed little effects on in vitro survival of glioblastoma cells, cell death by in vitro temozolomide treatment or irradiation was synergistically potentiated by combination with KML001. Since phosphorylated γ-H2AX, cleaved casepase-3, and cleaved PARP were dramatically increased by KML001, the synergistic effects would be mediated by increased DNA damage and subsequent tumor cell apoptosis. Combinatorial effects of KML001 were observed not only in chemo- and radiosensitive glioblastoma cell line, U87MG, but also in the resistant cell line, U251MG. In the U87MG glioblastoma xenograft models, KML001 did not have systemic toxicity but showed synergistic therapeutic effects in combination with temozolomide or irradiation to reduce tumor volumes significantly. These data indicated that KML001 could be a candidate sensitizer to potentiate therapeutic effects of conventional cytotoxic treatment for glioblastoma.


Laboratory Investigation | 2013

Radiosensitization of brain metastasis by targeting c-MET.

Heekyoung Yang; Hye Won Lee; Yonghyun Kim; Yeri Lee; Yeon Sook Choi; Kang Ho Kim; Juyoun Jin; Jeongwu Lee; Kyeung Min Joo; Do Hyun Nam

Radiotherapy is the most widely used therapeutic modality in brain metastasis; however, it only provides palliation due to inevitable tumor recurrence. Resistance of tumor cells to ionizing radiation is a major cause of treatment failure. A critical unmet need in oncology is to develop rationale driven approaches that can enhance the efficacy of radiotherapy against metastatic tumor. Utilizing in vivo orthotopic primary tumor and brain metastasis models that recapitulate clinical situation of the patients with metastatic breast cancer, we investigated a molecular mechanism through which metastatic tumor cells acquire resistance to radiation. Recent studies have demonstrated that the hepatocyte growth factor (HGF)-c-Met pathway is essential for the pathologic development and progression of many human cancers such as proliferation, invasion and resistance to anticancer therapies. In this study, c-Met signaling activity as well as total c-Met expression was significantly upregulated in both breast cancer cell lines irradiated in vitro and ex vivo radio-resistant cells derived from breast cancer brain metastatic xenografts. To interrogate the role of c-Met signaling in radioresistance of brain metastasis, we evaluated the effects on tumor cell viability, clonogenicity, sensitivity to radiation, and in vitro/in vivo tumor growth after targeting c-Met by small-hairpin RNA (shRNA) or small-molecule kinase inhibitor (PF-2341066). Although c-Met silencing or radiation alone demonstrated a modest decrease in clonogenic growth of parental breast cancers and brain metastatic derivatives, combination of two modalities showed synergistic antitumor effects resulting in significant prolongation of overall survival in tumor-bearing mice. Taken together, optimizing c-Met targeting in combination with radiation is critical to enhance the effectiveness of radiotherapy in the treatments of brain metastasis.


mAbs | 2015

Anticancer activity of TTAC-0001, a fully human anti-vascular endothelial growth factor receptor 2 (VEGFR-2/KDR) monoclonal antibody, is associated with inhibition of tumor angiogenesis

Kim Dg; Jin Y; Juyoun Jin; Heekyoung Yang; Kyeung Min Joo; Weon Sup Lee; Shim; Sung-Woo Kim; Ji Young Yoo; Sang Hoon Lee; Jin San Yoo; Do Hyun Nam

Vascular endothelial growth factor (VEGF) and its receptors are considered the primary cause of tumor-induced angiogenesis. Specifically, VEGFR-2/kinase insert domain receptor (KDR) is part of the major signaling pathway that plays a significant role in tumor angiogenesis, which is associated with the development of various types of tumor and metastasis. In particular, KDR is involved in tumor angiogenesis as well as cancer cell growth and survival. In this study, we evaluated the therapeutic potential of TTAC-0001, a fully human antibody against VEGFR-2/KDR. To assess the efficacy of the antibody and pharmacokinetic (PK) relationship in vivo, we tested the potency of TTAC-0001 in glioblastoma and colorectal cancer xenograft models. Antitumor activity of TTAC-0001 in preclinical models correlated with tumor growth arrest, induction of tumor cell apoptosis, and inhibition of angiogenesis. We also evaluated the combination effect of TTAC-0001 with a chemotherapeutic agent in xenograft models. We were able to determine the relationship between PK and the efficacy of TTAC-0001 through in vivo single-dose PK study. Taken together, our data suggest that targeting VEGFR-2 with TTAC-0001 could be a promising approach for cancer treatment.


Molecular Cancer | 2014

TopBP1 and Claspin contribute to the radioresistance of lung cancer brain metastases

Seung Ho Choi; Heekyoung Yang; Seung Ho Lee; Joo-Hyun Ki; Do-Hyun Nam; Hae Yong Yoo

BackgroundRadiation therapy is one of the most effective therapeutic tools for brain metastasis. However, it is inevitable that some cancer cells become resistant to radiation. This study is focused on the identification of genes associated with radioresistance in metastatic brain tumor from lung cancer and the functional examination of the selected genes with regards to altered sensitivity of cancer cells to radiation.MethodsAfter establishing radioresistant cells from the xenograft model, we explored the significant transcriptional changes by performing DNA microarray profiling. Functional analyses in vitro and in vivo performed to validate the gene responsible for radioresistance.ResultsTranscriptional changes induced by radiation therapy are much more extensive in H460 cells than in PC14PE6 cells. The expression levels of TopBP1 and Claspin were increased in the cancer cells that survived radiation therapy. Depletion of TopBP1 or Claspin using shRNA showed an enhancement of sensitivity to radiation in radioresistant lung cancer cells (PC14PE6). Moreover, increased levels of TopBP1 or Claspin endowed cells a higher resistance to radiation. In xenograft models, the knock-down of TopBP1 or Claspin significantly prolonged the median survival time post radiation therapy.ConclusionsWe analyzed the gene expression profiles of the radiosensitive cells and the radioresistant cells to define a set of genes that may be involved in endowing lung cancer cells radioresistance post brain metastasis. Functional analyses indicated that the expression TopBP1 and Claspin positively affects the survival of cancer cells and thus negatively the xenograft metastasis model animals in response to radiation. These results show that TopBP1 and Claspin can be potential targets for the enhanced efficacy of radiotherapy.


Oncotarget | 2016

Anti-miR delivery strategies to bypass the blood-brain barrier in glioblastoma therapy

Dong Geon Kim; Kang Ho Kim; Yun Jee Seo; Heekyoung Yang; Eric G. Marcusson; Eunju Son; Kyoungmin Lee; Jason K. Sa; Hyewon Lee; Do-Hyun Nam

Small non-coding RNAs called miRNAs are key regulators in various biological processes, including tumor initiation, propagation, and metastasis in glioblastoma as well as other cancers. Recent studies have shown the potential for oncogenic miRNAs as therapeutic targets in glioblastoma. However, the application of antisense oligomers, or anti-miRs, to the brain is limited due to the blood-brain barrier (BBB), when administered in the traditional systemic manner. To induce a therapeutic effect in glioblastoma, anti-miR therapy requires a robust and effective delivery system to overcome this obstacle. To bypass the BBB, different delivery administration methods for anti-miRs were evaluated. Stereotaxic surgery was performed to administer anti-Let-7 through intratumoral (ITu), intrathecal (ITh), and intraventricular (ICV) routes, and each methods efficacy was determined by changes in the expression of anti-Let-7 target genes as well as by immunohistochemical analysis. ITu administration of anti-miRs led to a high rate of anti-miR delivery to tumors in the brain by both bolus and continuous administration. In addition, ICV administration, compared with ITu administration, showed a greater distribution of the miR across entire brain tissues. This study suggests that local administration methods are a promising strategy for anti-miR treatment and may overcome current limitations in the treatment of glioblastoma in preclinical animal models.


European Journal of Medicinal Chemistry | 2015

Discovery of potent and selective cytotoxic activity of new quinazoline-ureas against TMZ-resistant glioblastoma multiforme (GBM).

Ahmed Elkamhawy; Ambily Nath Indu Viswanath; Ae Nim Pae; Hyeon Young Kim; Jin-Chul Heo; Woo-Kyu Park; Chong-Ock Lee; Heekyoung Yang; Kang Ho Kim; Do-Hyun Nam; Ho Jun Seol; Heeyeong Cho; Eun Joo Roh

Herein, we report new quinazoline-urea based compounds with potent cytotoxic activities against TMZ-resistant glioblastoma multiforme (GBM) cells. Low micromolar IC₅₀ values were exhibited over a panel of three primary GBM patient-derived cell cultures belonging to proneural (GBM-1), mesenchymal (GBM-2), and classical (GBM-3) subtypes. Eight compounds showed excellent selectivity indices for GBM cells comparing to a normal astrocyte cell line. In JC-1 assay, analogues 11, 12, 20, 22, and 24 exerted promising rates of mPTP opening induction towards proneural GBM subtype. Compounds 11, 20, and 24 bound to the translocator protein 18 kDa (TSPO) in submicromolar range using [(3)H] PK-11195 binding affinity assay. A homology model was built and docked models of 11, 12, 20, 22 and 24 were generated for describing their plausible binding modes in TSPO. In 3D clonogenic assay, compound 20 manifested potent tumoricidal effects on TMZ-resistant GBM cells even at submicromolar concentrations. In addition, CYP450 and hERG assays presented a safe toxicity profile of 20. Taken as a whole, this report presents compound 20 as a potent, selective and safe GBM cytotoxic agent which constitutes a promising direction against TMZ-resistant GBM.

Collaboration


Dive into the Heekyoung Yang's collaboration.

Top Co-Authors

Avatar

Do-Hyun Nam

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Juyoun Jin

Samsung Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kang Ho Kim

Samsung Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Do Hyun Nam

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Ho Jun Seol

Samsung Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dong Geon Kim

Jeju National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hye Won Lee

Samsung Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge