Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hegang Chen is active.

Publication


Featured researches published by Hegang Chen.


Cancer Research | 2009

A Novel Androgen Receptor Splice Variant Is Up-regulated during Prostate Cancer Progression and Promotes Androgen Depletion–Resistant Growth

Zhiyong Guo; Xi Yang; Feng Sun; Douglas E. Linn; Hege Chen; Hegang Chen; Xiangtian Kong; Jonathan Melamed; Clifford G. Tepper; Hsing Jien Kung; Angela Brodie; Joanne Edwards; Yun Qiu

The androgen receptor (AR) plays a key role in progression to incurable androgen ablation-resistant prostate cancer (PCA). We have identified three novel AR splice variants lacking the ligand-binding domain (designated as AR3, AR4, and AR5) in hormone-insensitive PCA cells. AR3, one of the major splice variants expressed in human prostate tissues, is constitutively active, and its transcriptional activity is not regulated by androgens or antiandrogens. Immunohistochemistry analysis on tissue microarrays containing 429 human prostate tissue samples shows that AR3 is significantly up-regulated during PCA progression and AR3 expression level is correlated with the risk of tumor recurrence after radical prostatectomy. Overexpression of AR3 confers ablation-independent growth of PCA cells, whereas specific knockdown of AR3 expression (without altering AR level) in hormone-resistant PCA cells attenuates their growth under androgen-depleted conditions in both cell culture and xenograft models, suggesting an indispensable role of AR3 in ablation-independent growth of PCA cells. Furthermore, AR3 may play a distinct, yet essential, role in ablation-independent growth through the regulation of a unique set of genes, including AKT1, which are not regulated by the prototype AR. Our data suggest that aberrant expression of AR splice variants may be a novel mechanism underlying ablation independence during PCA progression, and AR3 may serve as a prognostic marker to predict patient outcome in response to hormonal therapy. Given that these novel AR splice variants are not inhibited by currently available antiandrogen drugs, development of new drugs targeting these AR isoforms may potentially be effective for treatment of ablation-resistant PCA.


Cancer Cell | 2009

Regulation of androgen receptor transcriptional activity and specificity by RNF6-induced ubiquitination.

Kexin Xu; Hermela Shimelis; Douglas E. Linn; Xi Yang; Feng Sun; Zhiyong Guo; Hege Chen; Wei Li; Hegang Chen; Xiangtian Kong; Jonathan Melamed; Shengyun Fang; Zhen Xiao; Timothy D. Veenstra; Yun Qiu

The androgen receptor (AR) plays a critical role in prostate cancer. We have identified a ubiquitin E3 ligase, RNF6, as an AR-associated protein in a proteomic screen. RNF6 induces AR ubiquitination and promotes AR transcriptional activity. Specific knockdown of RNF6 or mutation of RNF6-induced ubiquitination acceptor sites on AR selectively alters expression of a subset of AR target genes and diminishes recruitment of AR and its coactivators to androgen-responsive elements present in the regulatory region of these genes. Furthermore, RNF6 is overexpressed in hormone-refractory human prostate cancer tissues and required for prostate cancer cell growth under androgen-depleted conditions. Our data suggest that RNF6-induced ubiquitination may regulate AR transcriptional activity and specificity through modulating cofactor recruitment.


Nature Cell Biology | 2001

Regulation of the PH-domain-containing tyrosine kinase Etk by focal adhesion kinase through the FERM domain

Riyan Chen; Oekyung Kim; Ming Li; Xinsheng Xiong; Jun-Lin Guan; Hsing Jien Kung; Hegang Chen; Yoji Shimizu; Yun Qiu

Etk/BMX, a member of the Btk family of tyrosine kinases, is highly expressed in cells with great migratory potential, including endothelial cells and metastatic carcinoma cell lines. Here, we present evidence that Etk is involved in integrin signalling and promotes cell migration. The activation of Etk by extracellular matrix proteins is regulated by FAK through an interaction between the PH domain of Etk and the FERM domain of FAK. The lack of Etk activation by extracellular matrix in FAK-null cells could be restored by co-transfection with wild-type FAK. Disrupting the interaction between Etk and FAK diminished the cell migration promoted by either kinase. Furthermore, inhibiting Etk expression in metastatic carcinoma cell lines with an antisense oligonucleotide blocks integrin-mediated migration of these cells. Taken together, our data indicate the essential role of the interaction of the PH domain of Etk and the FERM domain of FAK in integrin signalling.


Journal of Biological Chemistry | 2008

The 44-kDa Pim-1 Kinase Phosphorylates BCRP/ABCG2 and Thereby Promotes Its Multimerization and Drug-resistant Activity in Human Prostate Cancer Cells

Yingqiu Xie; Kexin Xu; Douglas E. Linn; Xi Yang; Zhiyong Guo; Hermela Shimelis; Takeo Nakanishi; Douglas D. Ross; Hegang Chen; Ladan Fazli; Martin Gleave; Yun Qiu

We previously showed that the 44-kDa serine/threonine kinase Pim-1 (Pim-1L) can protect prostate cancer cells from apoptosis induced by chemotherapeutic drugs (Xie, Y., Xu, K., Dai, B., Guo, Z., Jiang, T., Chen, H., and Qiu, Y. (2006) Oncogene 25, 70–78). To further explore the mechanisms of Pim-1L-mediated resistance to chemotherapeutic drugs in prostate cancer cells, we employed a yeast two-hybrid screening to identify cellular proteins that were associated with Pim-1L, and we found the ABC transporter BCRP/ABCG2 as one of the potential interacting partners of Pim-1L. We also showed that the expression level of Pim-1L and BCRP was up-regulated in mitoxantrone and docetaxel-resistant prostate cancer cell lines. Pim-1L was co-localized with BCRP on the plasma membrane and induced phosphorylation of BCRP at threonine 362. Knocking-down Pim-1L expression in the drug-resistant prostate cancer cells abolished multimer formation of endogenous BCRP and resensitized the resistant cells to chemotherapeutic drugs suggesting that BCRP phosphorylation induced by Pim-1L was essential for its functionality. This is further corroborated by our finding that the plasma membrane localization and drug-resistant activity of BCRP were compromised by T362A mutation. Our data suggest that Pim-1L may protect prostate cancer cells from apoptosis, at least in part, through regulation of transmembrane drug efflux pump. These findings may provide a potential therapeutic approach by disrupting Pim-1 signaling to reverse BCRP-mediated multidrug resistance.


Oncogene | 2004

Synergism of cytoplasmic kinases in IL6-induced ligand-independent activation of androgen receptor in prostate cancer cells

Oekyung Kim; Tianyun Jiang; Yingqiu Xie; Zhiyong Guo; Hegang Chen; Yun Qiu

IL6 is a pleiotropic cytokine which has been implicated in ligand-independent activation of androgen receptor in prostate cancer cells. Here, we present the evidence that two cytoplasmic kinases Pim1 and Etk are involved in this process. We showed that Pim1 is expressed in all prostate cancer cell lines examined. Both the expression level and the kinase activity of Pim1 are regulated by IL6 in these cells. Furthermore, we showed that IL6 downstream tyrosine kinase Etk can induce tyrosine phosphorylation of Pim1 which is correlated with its kinase activity. Mutation of the conserved Tyrosine 218 in the activation loop results in reduced kinase activity of Pim1. Interestingly, Etk can also be activated by Pim1 when they are coexpressed in prostate cancer cells, suggesting a possible positive feedback loop between Etk and Pim1. It appears that both Pim1 and Etk are required for IL6-induced activation of androgen receptor-mediated transcription in prostate cancer cells because overexpression of the kinase-deficient form of either Pim1 or Etk dramatically blocks the IL6 effect. Coexpression of the two kinases together but neither one alone is sufficient to activate ARE-containing promoter. Taken together, our data suggest a synergism of Ser/Thr kinase Pim1 and tyrosine kinase Etk in IL6 signaling and provide new insights into ligand-independent activation of androgen receptor in prostate cancer cells.


Journal of Biological Chemistry | 2011

Novel Membrane-associated Androgen Receptor Splice Variant Potentiates Proliferative and Survival Responses in Prostate Cancer Cells

Xi Yang; Zhiyong Guo; Feng Sun; Wei Li; Alan Alfano; Hermela Shimelis; Mingyuan Chen; Angela Brodie; Hegang Chen; Zhen Xiao; Timothy D. Veenstra; Yun Qiu

Background: The androgen receptor (AR) and its splice variants are critical for castration resistance of prostate cancer. Results: We have cloned a novel membrane-bound AR splice variant AR8 that is required for optimal activation of AR. Conclusion: AR8 potentiates AR transcriptional activity and promotes castration resistance. Significance: Our findings provide new insights into mechanisms by which AR and its variants promote castration resistance. Progression from the androgen-sensitive to androgen-insensitive (or castration-resistant) stage is the major obstacle for sustained effectiveness of hormonal therapy for prostate cancer. The androgen receptor (AR) and its splice variants play important roles in regulating the transcription program essential for castration resistance. Here, we report the identification of a novel AR splice variant, designated as AR8, which is up-regulated in castration-resistant prostate cancer cells. AR8 is structurally different from other known AR splice variants because it lacks a DNA binding domain and therefore, unlikely functions as a transcription factor on its own. Immunofluorescence staining revealed that AR8 was primarily localized on the plasma membrane, possibly through palmitoylation of two cysteine residues within its unique C-terminal sequence. Mutation of these putative palmitoylation sites in AR8 led to loss of its plasma membrane localization. In addition, we demonstrated that overexpression of AR8 in prostate cancer cells promoted association of Src and AR with the EGF receptor in response to EGF treatment and enhanced tyrosine phosphorylation of AR. Conversely, specific knockdown of AR8 expression in prostate cancer cells compromised EGF-induced Src activation and AR phosphorylation. This effect was accompanied with attenuation of proliferation and increased apoptosis in prostate cancer cells cultured in androgen-depleted medium. We also showed that AR8 was required for optimal transcriptional activity of AR in response to treatment of both androgen and EGF. Taken together, our results demonstrate that the membrane-associated AR8 isoform may contribute to castration resistance by potentiating AR-mediated proliferative and survival responses to hormones and growth factors.


Genes & Cancer | 2010

A Role for OCT4 in Tumor Initiation of Drug-Resistant Prostate Cancer Cells

Douglas E. Linn; Xi Yang; Feng Sun; Yingqiu Xie; Hege Chen; Hegang Chen; Saranya Chumsri; Angelika M. Burger; Yun Qiu

Drug resistance remains a clinical challenge in cancer treatment due to poor understanding of underlying mechanisms. We have established several drug-resistant prostate cancer cell lines by long-term culture in medium containing chemotherapeutic drugs. These resistant lines displayed a significant increase in side population cells due to overexpression of drug efflux pumps including ABCG2/BCRP and MDR1/Pgp. To uncover potential mechanisms underlying drug resistance, we performed microarray analysis to identify differentially expressed genes in 2 drug-resistant lines. We observed that POU5F1/OCT4, a transcription factor key to regulating pluripotency in embryonic stem cells, was upregulated in drug-resistant lines and accompanied by transcriptional activation of a set of its known target genes. Upregulation of OCT4 in drug-resistant cells was validated by RT-PCR and sequencing of PCR products as well as confirmation by Western blot and specific shRNA knockdown. Analysis of the regulatory region of POU5F1/OCT4 revealed a reduction of methylation in drug-resistant cell lines. Furthermore, these drug-resistant cells exhibited a significant increase in tumorigenicity in vivo. Subcutaneous inoculation of as few as 10 drug-resistant cells could initiate tumor formation in SCID mice, whereas no detectable tumors were observed from the parental line under similar conditions, suggesting that these drug-resistant cells may be enriched for tumor-initiating cells. Knocking down OCT4 expression by specific shRNAs attenuated growth of drug-resistant cells. Our data suggest that OCT4 re-expression in cancer cells may play an important role in carcinogenesis and provide one possible mechanism by which cancer cells acquire/maintain a drug-resistant phenotype.


Journal of Biological Chemistry | 2014

Androgen Receptor Splice Variant AR3 Promotes Prostate Cancer via Modulating Expression of Autocrine/Paracrine Factors

Feng Sun; He Ge Chen; Wei Li; Xi Yang; Xin Wang; Zhiyong Guo; Hegang Chen; Jiaoti Huang; Alexander D. Borowsky; Yun Qiu

Background: AR splice variants may play a critical role in prostate cancer. Results: AR3 modulates expression of tumor-promoting growth factors and promotes epithelial-mesenchymal transition, leading to development of prostatic intraepithelial neoplasia. Conclusion: AR3 promotes prostate cancer by modulating multiple tumor-associated autocrine/paracrine factors. Significance: Our findings provide new insights into mechanisms by which AR3 contributes to prostate cancer despite its heterogeneous expression pattern. Deregulation of androgen receptor (AR) splice variants has been implicated to play a role in prostate cancer development and progression. To understand their functions in prostate, we established a transgenic mouse model (AR3Tg) with targeted expression of the constitutively active and androgen-independent AR splice variant AR3 (a.k.a. AR-V7) in prostate epithelium. We found that overexpression of AR3 modulates expression of a number of tumor-promoting autocrine/paracrine growth factors (including Tgfβ2 and Igf1) and expands prostatic progenitor cell population, leading to development of prostatic intraepithelial neoplasia. In addition, we showed that some epithelial-mesenchymal transition-associated genes are up-regulated in AR3Tg prostates, suggesting that AR3 may antagonize AR activity and halt the differentiation process driven by AR and androgen. This notion is supported by our observations that the number of Ck5+/Ck8+ intermediate cells is increased in AR3Tg prostates after castration, and expression of AR3 transgene in these intermediate cells compromises prostate epithelium regeneration upon androgen replacement. Our results demonstrate that AR3 is a driver of prostate cancer, at least in part, through modulating multiple tumor-promoting autocrine/paracrine factors.


Cancer Research | 2010

Compensatory Upregulation of Tyrosine Kinase Etk/BMX in Response to Androgen Deprivation Promotes Castration-Resistant Growth of Prostate Cancer Cells

Bojie Dai; Hege Chen; Shengjie Guo; Xi Yang; Douglas E. Linn; Feng Sun; Wei Li; Zhiyong Guo; Kexin Xu; Oekyung Kim; Xiangtian Kong; Jonathan Melamed; Shaopeng Qiu; Hegang Chen; Yun Qiu

We previously showed that targeted expression of non-receptor tyrosine kinase Etk/BMX in mouse prostate induces prostate intraepithelial neoplasia, implying a possible causal role of Etk in prostate cancer development and progression. Here, we report that Etk is upregulated in both human and mouse prostates in response to androgen ablation. Etk expression seems to be differentially regulated by androgen and interleukin 6 (IL-6), which is possibly mediated by the androgen receptor (AR) in prostate cancer cells. Our immunohistochemical analysis of tissue microarrays containing 112 human prostate tumor samples revealed that Etk expression is elevated in hormone-resistant prostate cancer and positively correlated with tyrosine phosphorylation of AR (Pearson correlation coefficient rho = 0.71, P < 0.0001). AR tyrosine phosphorylation is increased in Etk-overexpressing cells, suggesting that Etk may be another tyrosine kinase, in addition to Src and Ack-1, which can phosphorylate AR. We also showed that Etk can directly interact with AR through its Src homology 2 domain, and such interaction may prevent the association of AR with Mdm2, leading to stabilization of AR under androgen-depleted conditions. Overexpression of Etk in androgen-sensitive LNCaP cells promotes tumor growth while knocking down Etk expression in hormone-insensitive prostate cancer cells by a specific shRNA that inhibits tumor growth under androgen-depleted conditions. Taken together, our data suggest that Etk may be a component of the adaptive compensatory mechanism activated by androgen ablation in prostate and may play a role in hormone resistance, at least in part, through direct modulation of the AR signaling pathway.


Cancer Research | 2006

Tyrosine kinase Etk/BMX is up-regulated in human prostate cancer and its overexpression induces prostate intraepithelial neoplasia in mouse

Bojie Dai; Oekyung Kim; Yingqiu Xie; Zhiyong Guo; Kexin Xu; Bin Wang; Xiangtian Kong; Jonathan Melamed; Hegang Chen; Charles J. Bieberich; Alexander D. Borowsky; Hsing Jien Kung; Guo Wei; Michael C. Ostrowski; Angela Brodie; Yun Qiu

The nonreceptor tyrosine kinase Etk/BMX was originally identified from the human prostate xenograft CWR22. Here, we report that Etk is up-regulated in human prostate tumor specimens surveyed. Knocking down Etk expression by a specific small interfering RNA (siRNA) in prostate cancer cells attenuates cell proliferation, suggesting an essential role of Etk for prostate cancer cell survival and growth. Targeted expression of Etk in mouse prostate epithelium results in pathologic changes resembling human prostatic intraepithelial neoplasia, indicating that up-regulation of Etk may contribute to prostate cancer development. A marked increase of luminal epithelial cell proliferation was observed in the Etk transgenic prostate, which may be attributed in part to the elevated activity of Akt and signal transducers and activators of transcription 3 (STAT3). More interestingly, the expression level of acetyltransferase cyclic AMP-responsive element binding protein-binding protein (CBP) is also increased in the Etk transgenic prostate as well as in a prostate cancer cell line overexpressing Etk, concomitant with elevated histone 3 acetylation at lysine 18 (H3K18Ac). Down-modulation of Etk expression by a specific siRNA leads to a decrease of H3 acetylation in prostate cancer cell lines. Our data suggest that Etk may also modulate chromatin remodeling by regulating the activity of acetyltransferases, such as CBP. Given that Etk may exert its effects in prostate through modulation of multiple signaling pathways altered in human prostate cancer, the Etk transgenic mouse model may be a useful tool for studying the functions of Etk and identification of new molecular markers and drug targets relevant to human diseases.

Collaboration


Dive into the Hegang Chen's collaboration.

Top Co-Authors

Avatar

Yun Qiu

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Zhiyong Guo

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Xi Yang

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Sun

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Kexin Xu

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oekyung Kim

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Wei Li

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge