Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hege Lynum Pedersen is active.

Publication


Featured researches published by Hege Lynum Pedersen.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2009

The first structure of a cold-adapted superoxide dismutase (SOD): biochemical and structural characterization of iron SOD from Aliivibrio salmonicida.

Hege Lynum Pedersen; Nils Peder Willassen; Ingar Leiros

Superoxide dismutases (SODs) are metalloenzymes that catalyse the dismutation of the superoxide radical anion into O(2) and H(2)O(2) in a two-step reaction. The crystal structure of the iron superoxide dismutase from the cold-adapted and fish-pathogenic bacterium Aliivibrio salmonicida (asFeSOD) has been determined and refined to 1.7 A resolution. The protein has been characterized and compared with the closely related homologous iron superoxide dismutase from the mesophilic Escherichia coli (ecFeSOD) in an attempt to rationalize its environmental adaptation. ecFeSOD shares 75% identity with asFeSOD. Compared with the mesophilic FeSOD, the psychrophilic FeSOD has distinct temperature differences in residual activity and thermostability that do not seem to be related to structural differences such as intramolecular or intermolecular ion bonds, hydrogen bonds or cavity sizes. However, an increased net negative charge on the surface of asFeSOD may explain its lower thermostability compared with ecFeSOD. Activity measurements and differential scanning calorimetry measurements revealed that the psychrophilic asFeSOD had a thermostability that was significantly higher than the optimal growth temperature of the host organism.


Seminars in Nephrology | 2015

Murine and Human Lupus Nephritis: Pathogenic Mechanisms and Theoretical Strategies for Therapy

Hege Lynum Pedersen; Kjersti Daae Horvei; Dhivya Thiyagarajan; Natalya Seredkina; Ole Petter Rekvig

Lupus nephritis is one of the most serious manifestations of systemic lupus erythematosus, and represents one of the criteria implemented to classify systemic lupus erythematosus. Although studied for decades, no consensus has been reached related to the basic cellular, molecular, and immunologic mechanism(s) responsible for lupus nephritis. No causal treatments have been developed; therapy is approached mainly with nonspecific immunosuppressive medications. More detailed insight into disease mechanisms therefore is indispensable to develop new therapeutic strategies. In this review, contemporary knowledge on the pathogenic mechanisms of lupus nephritis is discussed based on recent data in murine and human lupus nephritis. Specific focus is given to the effect of anti-double-stranded DNA/antinucleosome antibodies in the kidneys and whether they bind exposed chromatin fragments in glomeruli or whether they bind inherent glomerular structures by cross-recognition. Overall, the data presented here favor the exposed chromatin model because we did not find any indication to substantiate the anti-double-stranded DNA antibody cross-reacting model. At the end of this review we present data on why chromatin fragments are expressed in the glomeruli of patients with lupus nephritis, and discuss how this knowledge can be used to direct the development of future therapies.


Protein Expression and Purification | 2014

Recombinant expression and purification of an ATP-dependent DNA ligase from Aliivibrio salmonicida

Adele Kim Williamson; Hege Lynum Pedersen

The genome of the psychrophilic fish-pathogen Aliivibrio salmonicida encodes a putative ATP-dependent DNA ligase in addition to a housekeeping NAD-dependent enzyme. In order to study the structure and activity of the ATP dependent ligase in vitro we have undertaken its recombinant production and purification from an Escherichia coli based expression system. Expression and purification of this protein presented two significant challenges. First, the gene product was moderately toxic to E. coli cells, second it was necessary to remove the large amounts of E. coli DNA present in bacterial lysates without contamination of the protein preparation by nucleases which might interfere with future assaying. The toxicity problem was overcome by fusion of the putative ligase to large solubility tags such as maltose-binding protein (MBP) or Glutathione-S-transferase (GST), and DNA was removed by treatment with a nuclease which could be inhibited by reducing agents. As the A. salmonicida ATP-dependent DNA ligase gene encodes a predicted leader peptide, both the full-length and mature forms of the protein were produced. Both possessed ATP-dependent DNA ligase activity, but the truncated form was significantly more active. Here we detail the first reported production, purification and preliminary characterization of active A. salmonicida ATP-dependent DNA ligase.


Journal of Microbiology | 2010

Experimental and computational characterization of the ferric uptake regulator from Aliivibrio salmonicida (Vibrio salmonicida).

Hege Lynum Pedersen; Rafi Ahmad; Ellen Kristin Riise; Hanna-Kirsti S. Leiros; Stefan Hauglid; Sigrun Espelid; Bjøn Olav Brandsdal; Ingar Leiros; Nils-Peder Willassen; Peik Haugen

The Ferric uptake regulator (Fur) is a global transcription factor that affects expression of bacterial genes in an iron-dependent fashion. Although the Fur protein and its iron-responsive regulon are well studied, there are still important questions that remain to be answered. For example, the consensus Fur binding site also known as the “Fur box” is under debate, and it is still unclear which Fur residues directly interact with the DNA. Our long-term goal is to dissect the biological roles of Fur in the development of the disease cold-water vibriosis, which is caused by the psychrophilic bacteria Aliivibrio salmonicida (also known as Vibrio salmonicida). Here, we have used experimental and computational methods to characterise the Fur protein from A. salmonicida (AS-Fur). Electrophoretic mobility shift assays show that AS-Fur binds to the recently proposed vibrio Fur box consensus in addition to nine promoter regions that contain Fur boxes. Binding appears to be dependent on the number of Fur boxes, and the predicted “strength” of Fur boxes. Finally, structure modeling and molecular dynamics simulations provide new insights into potential AS-Fur-DNA interactions.


Journal of Molecular Microbiology and Biotechnology | 2012

Prediction, microarray and northern blot analyses identify new intergenic small RNAs in Aliivibrio salmonicida.

Rafi Ahmad; Geir Åsmund Hansen; Hilde Hansen; Erik Hjerde; Hege Lynum Pedersen; Steinar M. Paulsen; May Liss Julianne Nyrud; Anja Strauss; Nils-Peder Willassen; Peik Haugen

Bacterial small RNAs (sRNAs) are trans-encoded regulatory RNAs that typically bind mRNAs by short-sequence complementarities and change the expression of the corresponding proteins. Some of the well-characterized sRNAs serve critical steps in the regulation of important cellular processes, such as quorum sensing (Qrr), iron homeostasis (RyhB), oxidative stress (OxyS), and carbon metabolism (Spot 42). However, many sRNAs remain to be identified, and the functional roles of sRNAs are known for only a small fraction. For example, of the hundreds of candidate sRNAs from members of the bacterial family Vibrionaceae, the function is known for only 9. We have in this study significantly contributed to the discovery and verification of new sRNAs in a representative of Vibrionaceae, i.e. the Aliivibrio salmonicida, which causes severe disease in farmed Atlantic salmon and other fishes. A computational search for intergenic non-coding (nc) RNAs in the 4.6-Mb genome identified a total of 252 potential ncRNAs (including 233 putative sRNAs). Depending on the set threshold value for fluorescence signal in our microarray approach, we identified 50–80 putative ncRNAs, 12 of which were verified by Northern blot analysis. In total, we identified 9 new sRNAs.


Acta Crystallographica Section D-biological Crystallography | 2015

Structure determination of uracil-DNA N-glycosylase from Deinococcus radiodurans in complex with DNA

Hege Lynum Pedersen; Kenneth A. Johnson; Colin E. McVey; Ingar Leiros; Elin Moe

Uracil-DNA N-glycosylase (UNG) is a DNA-repair enzyme in the base-excision repair (BER) pathway which removes uracil from DNA. Here, the crystal structure of UNG from the extremophilic bacterium Deinococcus radiodurans (DrUNG) in complex with DNA is reported at a resolution of 1.35 Å. Prior to the crystallization experiments, the affinity between DrUNG and different DNA oligonucleotides was tested by electrophoretic mobility shift assays (EMSAs). As a result of this analysis, two 16 nt double-stranded DNAs were chosen for the co-crystallization experiments, one of which (16 nt AU) resulted in well diffracting crystals. The DNA in the co-crystal structure contained an abasic site (substrate product) flipped into the active site of the enzyme, with no uracil in the active-site pocket. Despite the high resolution, it was not possible to fit all of the terminal nucleotides of the DNA complex into electron density owing to disorder caused by a lack of stabilizing interactions. However, the DNA which was in contact with the enzyme, close to the active site, was well ordered and allowed detailed analysis of the enzyme-DNA interaction. The complex revealed that the interaction between DrUNG and DNA is similar to that in the previously determined crystal structure of human UNG (hUNG) in complex with DNA [Slupphaug et al. (1996). Nature (London), 384, 87-92]. Substitutions in a (here defined) variable part of the leucine loop result in a shorter loop (eight residues instead of nine) in DrUNG compared with hUNG; regardless of this, it seems to fulfil its role and generate a stabilizing force with the minor groove upon flipping out of the damaged base into the active site. The structure also provides a rationale for the previously observed high catalytic efficiency of DrUNG caused by high substrate affinity by demonstrating an increased number of long-range electrostatic interactions between the enzyme and the DNA. Interestingly, specific interactions between residues in the N-terminus of a symmetry-related molecule and the complementary DNA strand facing away from the active site were also observed which seem to stabilize the enzyme-DNA complex. However, the significance of this observation remains to be investigated. The results provide new insights into the current knowledge about DNA damage recognition and repair by uracil-DNA glycosylases.


PLOS ONE | 2017

Lupus nephritis progression in FcγRIIB-/-yaa mice is associated with early development of glomerular electron dense deposits and loss of renal DNase I in severe disease.

Kjersti Daae Horvei; Hege Lynum Pedersen; Silje Fismen; Dhivya Thiyagarajan; Andrea Schneider; Ole Petter Rekvig; Thomas H. Winkler; Natalya Seredkina

FcγRIIB-/-yaa mice develop severe lupus glomerulonephritis due to lack of an inhibitory immune cell receptor combined with a Y-chromosome linked autoimmune accelerator mutation. In the present study, we have investigated nephritis development and progression in FcγRIIB-/-yaa mice to find shared features with NZB/NZW F1 lupus prone mice and human disease. We sacrificed 25 male FcγRIIB-/-yaa mice at various disease stages, and grouped them according to activity and chronicity indices for lupus nephritis. Glomerular morphology and localization of electron dense deposits containing IgG were further determined by immune electron microscopy. Renal DNase I and pro-inflammatory cytokine mRNA levels were measured by real-time quantitative PCR. DNase I protein levels was assessed by immunohistochemistry and zymography. Our results demonstrate early development of electron dense deposits containing IgG in FcγRIIB-/-yaa mice, before detectable levels of serum anti-dsDNA antibodies. Similar to NZB/NZW F1, electron dense deposits in FcγRIIB-/-yaa progressed from being confined to the mesangium in the early stage of lupus nephritis to be present also in capillary glomerular basement membranes. In the advanced stage of lupus nephritis, renal DNase I was lost on both transcriptional and protein levels, which has previously been shown in NZB/NZW F1 mice and in human disease. Although lupus nephritis appears on different genetic backgrounds, our findings suggest similar processes when comparing different murine models and human lupus nephritis.


The Journal of Pathology: Clinical Research | 2018

Lupus nephritis: low urinary DNase I levels reflect loss of renal DNase I and may be utilized as a biomarker of disease progression: Urinary DNase I and lupus nephritis progression

Hege Lynum Pedersen; Kjersti Daae Horvei; Dhivya Thiyagarajan; Gudrun E. Norby; Natalya Seredkina; Gabriella Moroni; Gro Østli Eilertsen; Hallvard Holdaas; Erik H. Strøm; Gunnstein Bakland; Pier Luigi Meroni; Ole Petter Rekvig

Renal DNase I is lost in advanced stages of lupus nephritis. Here, we determined if loss of renal DNase I reflects a concurrent loss of urinary DNase I, and whether absence of urinary DNase I predicts disease progression. Mouse and human DNase I protein and DNase I endonuclease activity levels were determined by western blot, gel, and radial activity assays at different stages of the murine and human forms of the disease. Cellular localization of DNase I was analyzed by immunohistochemistry, immunofluorescence, confocal microscopy, and immunoelectron microscopy. We further compared DNase I levels in human native and transplanted kidneys to determine if the disease depended on autologous renal genes, or whether the nephritic process proceeded also in transplanted kidneys. The data indicate that reduced renal DNase I expression level relates to serious progression of lupus nephritis in murine, human native, and transplanted kidneys. Notably, silencing of renal DNase I correlated with loss of DNase I endonuclease activity in the urine samples. Thus, urinary DNase I levels may therefore be used as a marker of lupus nephritis disease progression and reduce the need for renal biopsies.


Frontiers in Cell and Developmental Biology | 2018

IL-1β Promotes a New Function of DNase I as a Transcription Factor for the Fas Receptor Gene

Dhivya Thiyagarajan; Hege Lynum Pedersen; Natalya Seredkina; Kjersti Daae Horvei; Lorena Arranz; Ramon Sonneveld; Tom Nijenhuis; Johan van der Vlag; Ole Petter Rekvig

Recently we described that endonuclease inactive DNase I translocated into the nucleus in response to increased endogenous IL-1β expression. Here, we demonstrate impact and function of translocated DNase I in tubular cells. Effect of cytokines on expression level and nuclear localisation of DNase I and corresponding levels of Fas receptor (FasR) and IL-1β were determined by confocal microscopy, qPCR and western blot analyses, in presence or absence of siRNA against IL-1β and DNase I mRNA. Nuclear DNase I bound to the FAS promotor region as determined by chromatin immuno-precipitation analysis. Data demonstrate that; (i) translocation of DNase I depended on endogenous de novo-expressed IL-1β, (ii) nuclear DNase I bound FAS DNA, (iii) FasR expression increased after translocation of DNase I, (iv) interaction of exogenous Fas ligand (FasL) with upregulated FasR induced apoptosis in human tubular cells stimulated with TNFα. Thus, translocated DNase I most probably binds the promoter region of the FAS gene and function as a transcription factor for FasR. In conclusion, DNase I not only executes chromatin degradation during apoptosis and necrosis, but also primes the cells for apoptosis by enhancing FasR expression.


American Journal of Pathology | 2016

Future Perspectives on Pathogenesis of Lupus Nephritis: Facts, Problems, and Potential Causal Therapy Modalities

Ole Petter Rekvig; Dhivya Thiyagarajan; Hege Lynum Pedersen; Kjersti Daae Horvei; Natalya Seredkina

Collaboration


Dive into the Hege Lynum Pedersen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elin Moe

University of Tromsø

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge