Hei Jen Huang
National Taiwan Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hei Jen Huang.
Brain Research | 2011
Hei Jen Huang; Keng-Chen Liang; Hsing Chieh Ke; Yen Yu Chang; Hsiu Mei Hsieh-Li
The interaction between gene and environment is known to play a major role in the etiology of several neuropsychiatric disorders, including Alzheimers disease (AD). The present study evaluated whether environmental manipulations such as social isolation may affect the genetic predisposition to accelerate the onset of AD-related symptoms in an adult APP/PS1 double mutant transgenic mouse model. Transgenic and wild-type male mice were housed either singly or in groups from the age of 3 months, and their behavior was compared at 7 months. Isolation had several effects on the APP/PS1 transgenic mice, including exacerbating the impairment of spatial working memory associated with increased Aβ42/Aβ40 ratio in the hippocampus; increased levels of MnSOD in the CA1-CA3 subregions of the hippocampus, basolateral part of the amygdala (BLA), and locus coeruleus (LC); and decreased numbers of cholinergic cells in the diagonal band of Broca (DB), noradrenergic neurons in LC, serotonergic neurons in the Raphe nucleus, and levels of NMDA 2B receptor (NR2B) in the hippocampus region. Our findings demonstrate the susceptibility of APP/PS1 transgenic adult male mice to environmental manipulation and show that social isolation has remarkable effects on the genetically determined AD-like symptoms.
Brain Research | 2011
Hsing Chieh Ke; Hei Jen Huang; Keng-Chen Liang; Hsiu Mei Hsieh-Li
Exercise may contribute to prevention of the cognitive decline and delay the onset of the Alzheimers disease (AD). We evaluated the effects of continuous non-shock treadmill exercise in adult and aged male APP/PS1 double mutant transgenic mice. Adult (7-8 month-old) and aged (24 month-old) male APP/PS1 transgenic and wild-type mice were randomly assigned to either sedentary or exercise groups. The exercise program included a one-week treadmill acclimatization to adapt to the novel environment. After acclimation, mice ran on a treadmill 5 days/week until sacrificed for pathological analyses. During exercise training, no tail shock was used in the exercise paradigm; only gentle tail touching was used to induce the mice to run, to minimize the stress otherwise associated with treadmill exercise. We found that the exercise program selectively improved the spatial learning and memory associated with an increase in both cholinergic neurons in the medial septum (MS)/vertical diagonal band (VDB) and serotonergic neurons in the raphe nucleus of aged APP/PS1 transgenic mice. In adult APP/PS1 transgenic mice, the exercise paradigm increased exploratory activity and reduced anxiety with an associated increase in numbers of serotonergic neurons in the raphe nucleus. In addition, the exercise paradigm also reduced amyloid-β peptide (Aβ) levels and microglia activation, but not enough to reduce the plaque loading in the hippocampus of the APP/PS1 transgenic mice. Therefore, these findings suggest that there may exist an age-related difference in the effect of continuous non-shock treadmill exercise training on AD.
PLOS ONE | 2012
Hei Jen Huang; Yen Hsu Chen; Keng-Chen Liang; Yu Syuan Jheng; Jhih Jhen Jhao; Ming Tsan Su; Guey-Jen Lee-Chen; Hsiu Mei Hsieh-Li
Background Chronic hyperglycemia-associated inflammation plays critical roles in disease initiation and the progression of diabetic complications, including Alzheimer’s disease (AD). However, the association of chronic hyperglycemia with acute inflammation of the central nervous system in the progression of AD still needs to be elucidated. In addition, recent evidence suggests that Glucagon-like peptide-1 receptor (GLP-1R) protects against neuronal damage in the brain. Therefore, the neuroprotective effects of the GLP-1R agonist exendin-4 (EX-4) against hyperglycemia/lipopolysaccharides (LPS) damage were also evaluated in this study. Methodology/Principal Findings Ten days after streptozotocin (STZ) or vehicle (sodium citrate) treatment in mice, EX-4 treatment (10 µg/kg/day) was applied to the mice before intrahippocampal CA1 injection of LPS or vehicle (saline) and continued for 28 days. This study examined the molecular alterations in these mice after LPS and EX4 application, respectively. The mouse cognitive function was evaluated during the last 6 days of EX-4 treatment. The results showed that the activation of NF-κB-related inflammatory responses induced cognitive dysfunction in both the hyperglycemic mice and the mice that received acute intrahippocampal LPS injection. Furthermore, acute intrahippocampal LPS injection exacerbated the impairment of spatial learning and memory through a strong decrease in monoaminergic neurons and increases in astrocytes activation and apoptosis in the hyperglycemic mice. However, EX-4 treatment protected against the cognitive dysfunction resulting from hyperglycemia or/and intrahippocampal LPS injection. Conclusions/Significance These findings reveal that both hyperglycemia and intrahippocampal LPS injection induced cognitive dysfunction via activation of NF-κB-related inflammatory responses. However, acute intrahippocampal LPS injection exacerbated the progression of cognitive dysfunction in the hyperglycemic mice via a large increase in astrocytes activation-related responses. Furthermore, EX-4 might be considered as a potential adjuvant entity to protect against neurodegenerative diseases.
Brain Research | 2008
Wei Lun Chen; Jun Wei Lin; Hei Jen Huang; Su Min Wang; Ming Tsan Su; Guey-Jen Lee-Chen; Chiung Mei Chen; Hsiu Mei Hsieh-Li
An increasing number of inherited neurodegenerative diseases are known to be caused by the expansion of unstable trinucleotide repeat tracts. Spinocerebellar ataxia type 8 (SCA8) has been identified as being partly caused by a CTG expansion in an untranslated, endogenous antisense RNA that overlaps the Kelch-like 1 (KLHL1) gene. Clinically, SCA8 patients show similar features to those with the other SCAs, including limb and truncal ataxia, ataxic dysarthria and horizontal nystagmus, all of which are signs of dysfunction of the cerebellar system. However, allele sizes within the SCA8 proposed pathogenic range have been reported in patients with ataxia of unknown etiology, in individuals from pedigrees with other SCA or Friedreichs ataxia, and in patients with Alzheimers disease, schizophrenia or parkinsonism. These observations suggest that mutation of the SCA8 locus might affect neurons other than the cerebellum. Antisense transcripts are known to regulate complementary sense transcripts and are involved in several biologic functions, such as development, adaptive response, and viral infection. In order to test whether SCA8 affects the KLHL1 expression by antisense RNA in brain cells, we examined the expression pattern of KLHL1 and SCA8 in human tissues and in mouse brain regions. SCA8 expression was colocalized with KLHL1 transcript in many brain regions whose functions are correlated to the clinical symptoms of SCA8 patients. These findings lead to the hypothesis of a possible relevance that SCA8 transcript downregulates KLHL1 expression through an antisense mechanism, which then leads to SCA8 neuropathogenesis.
Neurobiology of Learning and Memory | 2010
Hei Jen Huang; Keng-Chen Liang; Yen Yu Chang; Hsing Chieh Ke; Jia Yu Lin; Hsiu Mei Hsieh-Li
In this study, we investigated whether stress can enhance the toxicity of oligomer Abeta(1-40) in the mouse brain. Stress was applied to the animals, consisting of a 2-day inescapable foot shock followed by 3-weekly situation reminders (SRs). We found that stress significantly affected not only the amygdala-dependent (anxiety) but also the hippocampal-dependent (spatial learning and memory) behaviors through the oxidative damage caused in these two regions. However, oligomer Abeta(1-40) treatment alone did not induce behavioral impairment. In addition, combined oligomer Abeta(1-40) and stress treatment increased the glucocorticoid receptor (GR)/mineralocorticoid receptor (MR) ratio and the expression of corticotrophin releasing factor 1 (CRF-1) receptor in the hippocampus. Changes in the components of the hypothalamic-pituitary-adrenal (HPA) axis, such as the GR/MR ratio and CRF-1 level, were observed, accompanied by increasing Abeta accumulation, oxidative stress, nuclear transcription factor (NF-kappaB) hypoactivity, and apoptotic signaling in the hippocampus, and decreasing calbindin D28K and NMDA receptor 2A/2B (NR2A/2B) in the hippocampus, along with alteration of the cholinergic neurons (ChAT) in the medium septum/diagnoid band (MS/DB), noradrenergic neurons (TH) in the locus coeruleus (LC), and serotonergic neurons (5-HT) in the Raphe nucleus. Therefore, apoptosis and synaptic dysfunction in the hippocampus severely induced the impairment of spatial learning and memory. These results suggest that stress may play an important role in the early stages of Alzheimers disease (AD), and an antioxidant strategy might be a potential therapeutic approach for stress-mediated disorders.
Evidence-based Complementary and Alternative Medicine | 2014
Hei Jen Huang; Wei Lin Chen; Rong Hong Hsieh; Hsiu Mei Hsieh-Li
Mangosteen- (Garcinia mangostana-) based nutraceutical compounds have long been reported to possess multiple health-promoting properties. The current study investigated whether mangosteen pericarp (MP) could attenuate cognitive dysfunction. First, we found that treatment with MP significantly reduced the cell death and increased the brain-derived neurotrophic factor (BDNF) level in an organotypic hippocampal slice culture (OHSC). We then investigated the effects of age and MP diet on the cognitive function of male C57BL/6J (B6) mice. After 8-month dietary supplementation, the MP diet (5000 ppm) significantly attenuated the cognitive impairment associated with anti-inflammation, increasing BDNF level and decreasing p-tau (phospho-tau S202) in older B6 mice. We further applied MP dietary supplementation to triple transgenic Alzheimers disease (3×Tg-AD) mice from 5 to 13 months old. The MP diet exerted neuroprotective, antioxidative, and anti-inflammatory effects and reduced the Aβ deposition and p-tau (S202/S262) levels in the hippocampus of 3×Tg-AD mice, which might further attenuate the deficit in spatial memory retrieval. Thus, these results revealed that the multifunctional properties of MP might offer a promising supplementary diet to attenuate cognitive dysfunction in AD.
Journal of Neural Transmission | 2007
Yu-Yu Wu; Chiung Mei Chen; Ji-Chuu Hwang; Sien Tsong Chen; I. H. Feng; Hsuan Chu Hsu; C. N. Liu; Y. T. Liu; Y. Y. Lai; Hei Jen Huang; Guey-Jen Lee-Chen
SummaryInflammatory events may contribute to the pathogenesis of Parkinson’s disease (PD) and interleukin 1 (IL-1) may exert both neurotoxic and neuroprotective effects. We conducted a case-control study in a cohort of 493 PD cases and 388 ethnically matched controls to investigate the association of IL-1α C-889T and IL-1β C-511T polymorphisms with the risk of PD. No significant difference in the genotype distribution of the analyzed polymorphisms was found between PD and controls. However, after stratification by age, individuals over 70 years of age carrying IL-1α-889 C/T genotype demonstrated a significant decrease in risk of developing PD (OR = 0.44; 95% CI = 0.22−0.88, p = 0.021) and the decrease is strengthened by IL-1β-511 T-carrying genotype (OR = 0.28; 95% CI = 0.11−0.71, p = 0.008). Our data suggest that IL-1α, acting synergistically with IL-1β, plays role in PD susceptibility among Taiwanese people older than 70 years of age.
Neuropharmacology | 2016
Kuo Hsuan Chang; Ya Jen Chiu; Shu Ling Chen; Chen Hsiang Huang; Chih Hsin Lin; Te Hsien Lin; Chi Mei Lee; Chintakunta Ramesh; Chung Hsin Wu; Chin Chang Huang; Hon Chung Fung; Yi-Chun Chen; Jung Yaw Lin; Ching Fa Yao; Hei Jen Huang; Guey-Jen Lee-Chen; Ming Chung Lee; Hsiu Mei Hsieh-Li
Alzheimers disease (AD) is the most prevalent form of dementia associated with progressive cognitive decline and memory loss. Extracellular β-amyloid (Aβ) is a major constituent of senile plaques, one of the pathological hallmarks of AD. Aβ deposition causes neuronal death via a number of possible mechanisms such as increasing oxidative stress. Therefore therapeutic approaches to identify novel Aβ aggregate reducers could be effective for AD treatment. Using a Trx-His-Aβ biochemical assay, we screened 11 synthetic indolylquinoline compounds, and found NC009-1, -2, -6 and -7 displaying potential to reduce Aβ aggregation. Treating Tet-On Aβ-GFP 293 cells with these compounds reduced Aβ aggregation and reactive oxygen species. These compounds also promoted neurite outgrowth in Tet-On Aβ-GFP SH-SY5Y cells. Furthermore, treatment with above compounds improved neuronal cell viability, neurite outgrowth, and synaptophysin expression level in mouse hippocampal primary culture under oligomeric Aβ-induced cytotoxicity. Moreover, the tested NC009-1 significantly ameliorated Aβ-induced inhibition of hippocampal long-term potentiation in mouse hippocampal slices. Our results demonstrate how synthetic indolylquinoline compounds are likely to work as chemical chaperones in Aβ-aggregation reduction and neuroprotection, providing insight into the possible applications of indolylquinoline compounds in AD treatment.
CNS Neuroscience & Therapeutics | 2017
Kuo Hsuan Chang; Chih Hsin Lin; Hsuan Chiang Chen; Hsin Yu Huang; Shu Ling Chen; Te Hsien Lin; Chintakunta Ramesh; Chin Chang Huang; Hon Chung Fung; Yih Ru Wu; Hei Jen Huang; Guey-Jen Lee-Chen; Hsiu Mei Hsieh-Li; Ching Fa Yao
Neurofibrillary tangles formed from tau misfolding have long been considered one of the pathological hallmarks of Alzheimers disease (AD). The misfolding of tau in AD correlates with the clinical progression of AD and inhibition or reversal of tau misfolding may protect the affected neurons.
Brain Research | 2016
Ya Chin Chang; Chia Wei Lin; Chen Ming Hsu; Guey-Jen Lee-Chen; Ming Tsan Su; Long Sun Ro; Chiung Mei Chen; Hei Jen Huang; Hsiu Mei Hsieh-Li
Spinocerebellar ataxia type 17 (SCA17), an autosomal dominant cerebellar ataxia, is a devastating, incurable disease caused by the polyglutamine (polyQ) expansion of transcription factor TATA binding protein (TBP). The polyQ expansion causes misfolding and aggregation of the mutant TBP, further leading to cytotoxicity and cell death. The well-recognized prodromal phase in many forms of neurodegeneration suggests a prolonged period of partial neuronal dysfunction prior to cell loss that may be amenable to therapeutic intervention. The objective of this study was to assess the effects and molecular mechanisms of granulocyte-colony stimulating factor (G-CSF) therapy during the pre-symptomatic stage in SCA17 mice. Treatment with G-CSF at the pre-symptomatic stage improved the motor coordination of SCA17 mice and reduced the cell loss, insoluble mutant TBP protein, and vacuole formation in the Purkinje neurons of these mice. The neuroprotective effects of G-CSF may be produced by increases in Hsp70, Beclin-1, LC3-II and the p-ERK survival pathway. Upregulation of chaperone and autophagy levels further enhances the clearance of mutant protein aggregation, slowing the progression of pathology in SCA17 mice. Therefore, we showed that the early intervention of G-CSF has a neuroprotective effect, delaying the progression of SCA17 in mutant mice via increases in the levels of chaperone expression and autophagy.