Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heidi C. Hauffe is active.

Publication


Featured researches published by Heidi C. Hauffe.


Molecular Ecology | 2003

The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): A microsatellite analysis

Cristiano Vernesi; B. Crestanello; E. Pecchioli; D. Tartari; David Caramelli; Heidi C. Hauffe; Giorgio Bertorelle

The reintroduction of wild boar from central Europe after World War II has contributed substantially to the range expansion of this species in Italy, where indiscriminate hunting in earlier times resulted in extreme demographic reduction. However, the genetic impact of such processes is not well‐understood. In this study, 105 individuals from Italian and Hungarian wild boar populations were characterized for nine autosomal microsatellite loci. The Hungarian samples, and two central Italian samples from protected areas (parks) where reintroduction is not documented, were assumed to be representative of the genetic composition of the source and the target populations in the reintroduction process, respectively. Animals hunted in the wild in the Florence area of Tuscany (Italy) were then studied to identify the effects of reintroduction. The results we obtained can be summarized as follows: (i) none of the populations analysed shows genetic evidence of demographic decline; (ii) the three parental populations from Italy and Hungary are genetically distinct; however, the low level of divergence appears in conflict with the naming of the Italian and the European subspecies (Sus scrofa majori and Sus scrofa scrofa, respectively); in addition, the Italian groups appear to be as divergent from each other as they are from the Hungarian population; (iii) most of the individuals hunted near Florence are genetically intermediate between the parental groups, suggesting that hybridization has occurred in this area, the average introgression of Hungarian genotypes is 13%, but ≈ 45% of the genetic pool of these individuals can not be directly attributed to any of the parental populations we analysed; (iv) analysis of microsatellite loci, though in a limited number, is an important tool for estimating the genetic effect of reintroduction in the wild boar, and therefore for the development of conservation and management strategies for this species.


PLOS ONE | 2009

Forest Structure and Roe Deer Abundance Predict Tick-Borne Encephalitis Risk in Italy

Annapaola Rizzoli; Heidi C. Hauffe; Valentina Tagliapietra; Markus Neteler; Roberto Rosà

Background The Western Tick-borne encephalitis (TBE) virus often causes devastating or lethal disease. In Europe, the number of human TBE cases has increased dramatically over the last decade, risk areas are expanding and new foci are being discovered every year. The early localisation of new TBE foci and the identification of the main risk factors associated with disease emergence represent a priority for the public health community. Although a number of socio-economic parameters have been suggested to explain TBE upsurges in eastern Europe, the principal driving factors in relatively stable western European countries have not been identified. Methodology/Principal Findings In this paper, we analyse the correlation between the upsurge of TBE in 17 alpine provinces in northern Italy from 1992 to 2006 with climatic variables, forest structure (as a proxy for small mammal reservoir host abundance), and abundance of the principal large vertebrate tick host (roe deer), using datasets available for the last 40 years. No significant differences between the pattern of changes in climatic variables in provinces where TBE has emerged compared to provinces were no clinical TBE cases have been observed to date. Instead, the best model for explaining the increase in TBE incidence in humans in this area include changes in forest structure, in particular the ratio of coppice to high stand forest, and the density of roe deer. Conclusion/Significance Substantial changes in vegetation structure that improve habitat suitability for the main TBE reservoir hosts (small mammals), as well as an increase in roe deer abundance due to changes in land and wildlife management practices, are likely to be among the most crucial factors affecting the circulation potential of Western TBE virus and, consequently, the risk of TBE emergence in humans in western Europe. We believe our approach will be useful in predicting TBE risk on a wider scale.


Molecular Ecology | 2005

Geographical distance and physical barriers shape the genetic structure of Eurasian red squirrels (Sciurus vulgaris) in the Italian Alps

I. Trizio; B. Crestanello; P. Galbusera; Lucas A. Wauters; Guido Tosi; Erik Matthysen; Heidi C. Hauffe

Red squirrels (Sciurus vulgaris) are widely distributed throughout Eurasia, occurring in many types of coniferous and mixed‐deciduous forests. In fragmented landscapes, small and partly isolated populations with low immigration rates show reduced genetic diversity, but reforestation can increase gene flow and restore levels of genetic variation in a few decades. No studies have so far investigated the genetic structure of red squirrel in large, continuous forests. The Italian Alps are presently characterized by almost continuous, recently reconnected forest habitats, that were affected by deep landscape changes during last glaciations but remained mostly unchanged between 10 000 and 200 years bp, when forest cover was heavily reduced. In this study we analyse patterns of genetic variability of red squirrels in and between seven sites distributed over 250 km of Alpine habitat, using mitochondrial DNA (mtDNA) and microsatellites. We use isolation‐by‐distance (IBD) models to investigate the relative importance that past (Pleistocene glaciations) and recent (fragmentation, bottlenecks) events had on the present genetic situation. Both nuclear and mtDNA data indicate a significant differentiation among study sites and a significant correlation between genetic and geographical distance only over a large scale. No recent bottlenecks are recorded through microsatellites and demographic models strongly support equilibrium between gene flow and drift; however, mtDNA suggests that there may have been local demographic crashes, probably in correspondence with the 19th‐century forest fragmentation. These findings indicate that local landscape factors other than geographical distance per se, such as barriers of unsuitable habitat, affect gene flow and determine differentiation.


Evolution | 1993

EXTREME KARYOTYPIC VARIATION IN A MUS MUSCULUS DOMESTICUS HYBRID ZONE: THE TOBACCO MOUSE STORY REVISITED

Heidi C. Hauffe; Jeremy B. Searle

The Robertsonian fusion is a common chromosomal mutation among mammal species and is especially prevalent in the West European house mouse, Mus musculus domesticus. More than 40 races of the house mouse exist in Europe, including the famous “tobacco mouse” (Poschiavo race) of Val Poschiavo, Switzerland. Documented here is the discovery of an extreme case of karyotypic variation in the neighboring Upper Valtellina, Italy. In a 20‐km stretch of the valley, 32 karyotypes were observed, including five chromosomal races and 27 hybrid types. One previously unknown race is reported, the “Mid Valtellina” race, with a diploid number of 2n = 24 and the Robertsonian fusions Rb(1.3), Rb(4.6), Rb(5.15), Rb(7.18), Rb(8.12), Rb(9.14), Rb(11.13), and Rb(16.17). The Poschiavo race (2n = 26), Upper Valtellina race (2n = 24), Lower Valtellina race (2n = 22) and all‐acrocentric race (2n = 40) were also present. The races form a patchy distribution, which we term a “mottled hybrid zone.” Geographical position, isolation, extinction, recolonization, and selection against hybrids are all believed to be instrumental in the origin and evolution of this complex system. Previous studies of house mice from Upper Valtellina indicated that two of the races in the valley (the Upper Valtellina and Poschiavo races) may have speciated in the village of Migiondo. We discuss the possibility that there may have been a reinforcement event in this village.


Evolution | 2004

Linkage-dependent gene flow in a house mouse chromosomal hybrid zone.

Thadsin Panithanarak; Heidi C. Hauffe; John F. Dallas; Anita Glover; Richard G. Ward; Jeremy B. Searle

Abstract In the alpine valley of Valtellina there are two Robertsonian chromosomal races of house mouse, the Poschiavo (POS: 2n= 24–26) characterized by metacentric 8.12 and acrocentrics 2 and 10 and the Upper Valtellina (UV: 2n= 22–24) characterized by metacentrics 2.8 and 10.12. The races inhabit separate villages in the valley except in Sommacologna and Sondalo, where they both occur together with hybrids. A total of 179 mice from 16 villages were typed at 13 microsatellite loci. Seven of these loci were localized close to the centromeres of chromosomes 10 and 12, with the prediction that these regions on the race‐specific chromosomes would be the most likely to experience a barrier to gene flow. The remaining six loci were localized at the telomeres of chromosomes 10 and 12 and at the centromeres of chromosomes that do not differ between the races. Substantial differences in allelic frequencies were found between the villages with POS and UV races at five of the loci at the centromeres of chromosomes 10 and 12 but at none of the other loci. These differences were not found to distinguish the two races in Sommacologna and Sondalo. Therefore, the centromeric regions of race‐specific chromosomes do appear to experience a barrier to gene flow, although this can break down under intense interbreeding between the races. These results are considered in the context of Harrisons (1990) concept of the semipermeability of hybrid zones to gene exchange and in relation to parapatric speciation.


Molecular Ecology | 2008

Raciation and speciation in house mice from the Alps: the role of chromosomes

Jaroslav Piálek; Heidi C. Hauffe; Kathryn M. Rodríguez-Clark; Jeremy B. Searle

There are at least 24 different karyotypic races of house mouse in the central Alps, each characterized by a different complement of ancestral acrocentric and derived metacentric chromosomes; altogether 55 different metacentric chromosomes have been described from the region. We argue that this chromosome variation largely arose in situ. If these races were to make contact, in most cases they would produce F1 hybrids with substantial infertility (sometimes complete sterility), due to nondisjunction and germ cell death associated with the formation of long‐chain and/or ring configurations at meiosis. We present fertility estimates to confirm this for two particular hybrid types, one of which demonstrates male‐limited sterility (in accordance with Haldane’s Rule). As well as a model for speciation in allopatry, the Alpine mouse populations are of interest with regards speciation in parapatry: we discuss a possible reinforcement event. Raciation of house mice appears to have happened on numerous occasions within the central Alps. To investigate one possible source of new karyotypic races, we use a two‐dimensional stepping stone model to examine the generation of recombinant races within chromosomal hybrid zones. Using field‐derived ecological data and laboratory‐derived fertility estimates, we show that hybrid karyotypic races can be generated at a reasonable frequency in simulations. Our model complements others developed for flowering plants that also emphasize the potential of chromosomal hybrid zones in generating new stable karyotypic forms.


Conservation Genetics Resources | 2013

Bringing genetic diversity to the forefront of conservation policy and management

Sean Hoban; Heidi C. Hauffe; Sílvia Pérez-Espona; Jan W. Arntzen; Giorgio Bertorelle; Josef Bryja; Katie Frith; Oscar E. Gaggiotti; P. Galbusera; José A. Godoy; A. Rus Hoelzel; Richard A. Nichols; Craig R. Primmer; Isa-Rita Russo; Gernot Segelbacher; Hans R. Siegismund; Marjatta Sihvonen; Cristiano Vernesi; Carles Vilà; Michael William Bruford

In this essay we explore questions on how to increase the visibility and utility of genetic information for biodiversity managers and policy makers. This is discussed in the light of Aichi CBD Target 13, which for the first time impels signatories to minimise genetic erosion and safeguard genetic diversity. Drawing on qualitative results from a questionnaire sent to European conservation professionals by the ConGRESS Framework 7 Support Action (www.congressgenetics.eu), we summarise our preliminary findings on the attitudes and experiences of European conservation professionals in using genetics. We then discuss the implications of these findings for academics involved in conservation genetics and suggest that a much closer partnership between academic conservation geneticists and conservation practitioners is necessary if the full potential of genetic tools in conservation is to be realised.


Evolution | 2013

UNDERSTANDING THE BASIS OF DIMINISHED GENE FLOW BETWEEN HYBRIDIZING CHROMOSOME RACES OF THE HOUSE MOUSE

Mabel D. Giménez; Thomas A. White; Heidi C. Hauffe; Thadsin Panithanarak; Jeremy B. Searle

Speciation may be promoted in hybrid zones if there is an interruption to gene flow between the hybridizing forms. For hybridizing chromosome races of the house mouse in Valtellina (Italy), distinguished by whole‐arm chromosomal rearrangements, previous studies have shown that there is greater interruption to gene flow at the centromeres of chromosomes that differ between the races than at distal regions of the same chromosome or at the centromeres of other chromosomes. Here, by increasing the number of markers along race‐specific chromosomes, we reveal a decay in between‐race genetic differentiation from the centromere to the distal telomere. For the first time, we use simulation models to investigate the possible role of recombination suppression and hybrid breakdown in generating this pattern. We also consider epistasis and selective sweeps as explanations for isolated chromosomal regions away from the centromere showing differentiation between the races. Hybrid breakdown alone is the simplest explanation for the decay in genetic differentiation with distance from the centromere. Robertsonian fusions/whole‐arm reciprocal translocations are common chromosomal rearrangements characterizing both closely related species and races within species, and this fine‐scale empirical analysis suggests that the unfitness associated with these rearrangements in the heterozygous state may contribute to the speciation process.


Journal of Heredity | 2009

The Genetic Impact of Translocations and Habitat Fragmentation in Chamois (Rupicapra) spp.

Barbara Crestanello; Elena Pecchioli; Cristiano Vernesi; Stefano Mona; Natalia Martínková; M. Janiga; Heidi C. Hauffe; Giorgio Bertorelle

The chamois is a useful species with which to investigate the combined genetic impact of habitat fragmentation, over hunting, and translocations. Genetic variation within and between chamois (genus Rupicapra) populations was analyzed in 259 individuals from 16 sampling sites located in Italy, Spain, Slovakia, and the Czech Republic. Two mitochondrial DNA markers (control region and cytochrome b) and 11 nuclear microsatellites were typed. The principal results of this study can be summarized as follows: 1) high and significant differentiation between almost all chamois populations is observed even on a microgeographical scale, probably caused by the patchy distribution of this species, sharp geographical barriers to gene flow, and drift effects related to recent bottlenecks; 2) historical translocation events have left a clear genetic signature, including interspecific hybridization in some Alpine localities; 3) the Apennine subspecies of chamois, Rupicapra pyrenaica ornata, shows a high and similar level of divergence (about 1.5 My) from the Pyrenean (Rupicapra pyrenaica pyrenaica) and the Alpine (Rupicapra rupicapra) chamois; therefore, the specific status of these taxa should be revised. These results confirm the potential of population genetic analyses to dissect and interpret complex patterns of diversity in order to define factors important to conservation and management.


Progress in Physical Geography | 2015

Potential of remote sensing to predict species invasions A modelling perspective

Duccio Rocchini; Verónica Andreo; Michael Förster; Carol X. Garzon-Lopez; Andrew Paul Gutierrez; Thomas W. Gillespie; Heidi C. Hauffe; Kate S. He; Birgit Kleinschmit; Paola Mairota; Matteo Marcantonio; Markus Metz; Harini Nagendra; Sajid Pareeth; Luigi Ponti; Carlo Ricotta; Annapaola Rizzoli; Gertrud Schaab; Roberto Zorer; Markus Neteler

Understanding the causes and effects of species invasions is a priority in ecology and conservation biology. One of the crucial steps in evaluating the impact of invasive species is to map changes in their actual and potential distribution and relative abundance across a wide region over an appropriate time span. While direct and indirect remote sensing approaches have long been used to assess the invasion of plant species, the distribution of invasive animals is mainly based on indirect methods that rely on environmental proxies of conditions suitable for colonization by a particular species. The aim of this article is to review recent efforts in the predictive modelling of the spread of both plant and animal invasive species using remote sensing, and to stimulate debate on the potential use of remote sensing in biological invasion monitoring and forecasting. Specifically, the challenges and drawbacks of remote sensing techniques are discussed in relation to: i) developing species distribution models, and ii) studying life cycle changes and phenological variations. Finally, the paper addresses the open challenges and pitfalls of remote sensing for biological invasion studies including sensor characteristics, upscaling and downscaling in species distribution models, and uncertainty of results.

Collaboration


Dive into the Heidi C. Hauffe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valentina Tagliapietra

Finnish Forest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mabel D. Giménez

National University of Misiones

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaroslav Piálek

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge