Heidi Gumpert
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heidi Gumpert.
Science Translational Medicine | 2014
Christian Munck; Heidi Gumpert; Annika Nilsson Wallin; Harris H. Wang; Morten Otto Alexander Sommer
Collateral sensitivity profiles of drug-evolved lineages can be used to predict drug combinations that suppress evolution of resistance. It Takes Two—But Which Two? Long-term treatment regimens—such as those prescribed for patients with tuberculosis or cancer—often drive development of drug resistance. Treatment with two or more drugs reduces resistance evolution, but not all drug pairs are created equally. Predictive models are needed to permit the rational design of resistance-limiting therapeutic regimens. To design such models, Munck et al. used adaptive evolution and genomic analysis to decipher the resistance response of pathogenic Escherichia coli to 5 different single antibiotics and ten different antibiotic drug pairs. Resistance mutations often occur in key genes influencing the overall homeostasis of the cell. As a result, organisms that develop resistance to one drug sometimes display a greater sensitivity to a second drug (collateral sensitivity). The authors analyzed the genomes of evolved resistant E. coli lineages and pinpointed the mutational events that gave rise to differences in drug-resistance levels and collateral sensitivity and illuminated mechanisms that underlie the development of resistance to drug combinations. Furthermore the authors demonstrate that this effect can be exploited to design drug combinations that limit drug resistance and even select against resistance mutations. The resulting framework sets the stage for rational selection of drug combinations that limit resistance development. Resistance arises quickly during chemotherapeutic selection and is particularly problematic during long-term treatment regimens such as those for tuberculosis, HIV infections, or cancer. Although drug combination therapy reduces the evolution of drug resistance, drug pairs vary in their ability to do so. Thus, predictive models are needed to rationally design resistance-limiting therapeutic regimens. Using adaptive evolution, we studied the resistance response of the common pathogen Escherichia coli to 5 different single antibiotics and all 10 different antibiotic drug pairs. By analyzing the genomes of all evolved E. coli lineages, we identified the mutational events that drive the differences in drug resistance levels and found that the degree of resistance development against drug combinations can be understood in terms of collateral sensitivity and resistance that occurred during adaptation to the component drugs. Then, using engineered E. coli strains, we confirmed that drug resistance mutations that imposed collateral sensitivity were suppressed in a drug pair growth environment. These results provide a framework for rationally selecting drug combinations that limit resistance evolution.
Nature Communications | 2014
Elizabeth Rettedal; Heidi Gumpert; Morten Otto Alexander Sommer
The human gut microbiota is linked to a variety of human health issues and implicated in antibiotic resistance gene dissemination. Most of these associations rely on culture-independent methods, since it is commonly believed that gut microbiota cannot be easily or sufficiently cultured. Here, we show that carefully designed conditions enable cultivation of a representative proportion of human gut bacteria, enabling rapid multiplex phenotypic profiling. We use this approach to determine the phylogenetic distribution of antibiotic tolerance phenotypes for 16 antibiotics in the human gut microbiota. Based on the phenotypic mapping, we tailor antibiotic combinations to specifically select for previously uncultivated bacteria. Utilizing this method we cultivate and sequence the genomes of four isolates, one of which apparently belongs to the genus Oscillibacter; uncultivated Oscillibacter strains have been previously found to be anti-correlated with Crohns disease.
Molecular Biology and Evolution | 2015
Mari Cristina Rodriguez de Evgrafov; Heidi Gumpert; Christian Munck; Thomas Thyge Thomsen; Morten Otto Alexander Sommer
As drug-resistant pathogens continue to emerge, combination therapy will increasingly be relied upon to treat infections and to help combat further development of multidrug resistance. At present a dichotomy exists between clinical practice, which favors therapeutically synergistic combinations, and the scientific model emerging from in vitro experimental work, which maintains that this interaction provides greater selective pressure toward resistance development than other interaction types. We sought to extend the current paradigm, based on work below or near minimum inhibitory concentration levels, to reflect drug concentrations more likely to be encountered during treatment. We performed a series of adaptive evolution experiments using Staphylococcus aureus. Interestingly, no relationship between drug interaction type and resistance evolution was found as resistance increased significantly beyond wild-type levels. All drug combinations, irrespective of interaction types, effectively limited resistance evolution compared with monotreatment. Cross-resistance and collateral sensitivity were found to be important factors in the extent of resistance evolution toward a combination. Comparative genomic analyses revealed that resistance to drug combinations was mediated largely by mutations in the same genes as single-drug-evolved lineages highlighting the importance of the component drugs in determining the rate of resistance evolution. Results of this work suggest that the mechanisms of resistance to constituent drugs should be the focus of future resistance evolution work.
Journal of Antimicrobial Chemotherapy | 2017
Mette Pinholt; Heidi Gumpert; Sion Bayliss; Jesper Boye Nielsen; Veronika Vorobieva; Michael Pedersen; Edward J. Feil; Peder Worning; Henrik Westh
Objectives From 2012 to 2014, there has been a huge increase in vancomycin-resistant (vanA) Enterococcus faecium (VREfm) in Copenhagen, Denmark, with 602 patients infected or colonized with VREfm in 2014 compared with just 22 in 2012. The objective of this study was to describe the genetic epidemiology of VREfm to assess the contribution of clonal spread and horizontal transfer of the vanA transposon (Tn1546) and plasmid in the dissemination of VREfm in hospitals. Methods VREfm from Copenhagen, Denmark (2012–14) were whole-genome sequenced. The clonal structure was determined and the structure of Tn1546-like transposons was characterized. One VREfm isolate belonging to the largest clonal group was sequenced using long-read technology to close a 37 kb vanA plasmid. Results Phylogeny revealed a polyclonal structure where 495 VREfm isolates were divided into 13 main groups and 7 small groups. The majority of the isolates were located in three groups (n = 44, 100 and 218) and clonal spread of VREfm between wards and hospitals was identified. Five Tn1546-like transposon types were identified. A dominant truncated transposon (type 4, 92%) was spread across all but one VREfm group. The closed vanA plasmid was highly covered by reads from isolates containing the type 4 transposon. Conclusions This study suggests that it was the dissemination of the type 4 Tn1546-like transposon and plasmid via horizontal transfer to multiple populations of E. faecium, followed by clonal spread of new VREfm clones, that contributed to the increase in and diversity of VREfm in Danish hospitals.
Emerging Infectious Diseases | 2017
Helle Brander Eriksen; Heidi Gumpert; Cecilie Haase Faurholt; Henrik Westh
In a hospital-acquired infection with multidrug-resistant Elizabethkingia, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene analysis identified the pathogen as Elizabethkingia miricola. Whole-genome sequencing, genus-level core genome analysis, and in silico DNA-DNA hybridization of 35 Elizabethkingia strains indicated that the species taxonomy should be further explored.
Frontiers in Microbiology | 2017
Thomas Arn Hansen; Mette Damkjær Bartels; Silje Vermedal Høgh; Lone Elisabet Dons; Michael Pedersen; Thøger Gorm Jensen; Michael Kemp; Marianne Nielsine Skov; Heidi Gumpert; Peder Worning; Henrik Westh
Staphylococcus argenteus (S. argenteus) is a newly identified Staphylococcus species that has been misidentified as Staphylococcus aureus (S. aureus) and is clinically relevant. We identified 25 S. argenteus genomes in our collection of whole genome sequenced S. aureus. These genomes were compared to publicly available genomes and a phylogeny revealed seven clusters corresponding to seven clonal complexes. The genome of S. argenteus was found to be different from the genome of S. aureus and a core genome analysis showed that ~33% of the total gene pool was shared between the two species, at 90% homology level. An assessment of mobile elements shows flow of SCCmec cassettes, plasmids, phages, and pathogenicity islands, between S. argenteus and S. aureus. This dataset emphasizes that S. argenteus and S. aureus are two separate species that share genetic material.
Frontiers in Cellular and Infection Microbiology | 2017
Andreas Porse; Heidi Gumpert; Jessica Z. Kubicek-Sutherland; Nahid Karami; Ingegerd Adlerberth; Agnes E. Wold; Dan I. Andersson; Morten Otto Alexander Sommer
Elucidating the adaptive strategies and plasticity of bacterial genomes in situ is crucial for understanding the epidemiology and evolution of pathogens threatening human health. While much is known about the evolution of Escherichia coli in controlled laboratory environments, less effort has been made to elucidate the genome dynamics of E. coli in its native settings. Here, we follow the genome dynamics of co-existing E. coli lineages in situ of the infant gut during the first year of life. One E. coli lineage causes a urinary tract infection (UTI) and experiences several alterations of its genomic content during subsequent antibiotic treatment. Interestingly, all isolates of this uropathogenic E. coli strain carried a highly stable plasmid implicated in virulence of diverse pathogenic strains from all over the world. While virulence elements are certainly beneficial during infection scenarios, their role in gut colonization and pathogen persistence is poorly understood. We performed in vivo competitive fitness experiments to assess the role of this highly disseminated virulence plasmid in gut colonization, but found no evidence for a direct benefit of plasmid carriage. Through plasmid stability assays, we demonstrate that this plasmid is maintained in a parasitic manner, by strong first-line inheritance mechanisms, acting on the single-cell level, rather than providing a direct survival advantage in the gut. Investigating the ecology of endemic accessory genetic elements, in their pathogenic hosts and native environment, is of vital importance if we want to understand the evolution and persistence of highly virulent and drug resistant bacterial isolates.
Journal of Antimicrobial Chemotherapy | 2017
Anette M. Hammerum; Sharmin Baig; Yasmin Kamel; Louise Roer; Mette Pinholt; Heidi Gumpert; Barbara J. Holzknecht; Bent Røder; Ulrik Stenz Justesen; Jurgita Samulioniené; Mona Kjærsgaard; Claus Østergaard; Anette Holm; Esad Dzajic; Turid S. Søndergaard; Shahin Gaini; Petra Edquist; Erik Alm; Berit Lilje; Henrik Westh; Marc Stegger; Henrik Hasman
Objectives To describe the changing epidemiology of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in clinical samples in Denmark 2005-15 according to species and van type, and, furthermore, to investigate the genetic relatedness of the clinical E. faecium isolates from 2015. Methods During 2005-14, all clinical VRE isolates were tested for the presence of vanA/B/C genes by PCR. In 2015, all clinical VRE isolates were whole-genome sequenced. From the WGS data, the presence of van genes and MLST STs were extracted in silico . Core-genome MLST (cgMLST) analysis was performed for the vancomycin-resistant E. faecium isolates. Results During 2005-15, 1043 vanA E. faecium , 25 vanB E. faecium , 4 vanA E. faecalis and 28 vanB E. faecalis were detected. The number of VRE was <50 isolates/year until 2012 to > 200 isolates/year in 2013-15. In 2015, 368 vanA E. faecium and 1 vanB E. faecium were detected along with 1 vanA E. faecalis and 1 vanB E. faecalis . cgMLST subdivided the 368 vanA E. faecium isolates into 33 cluster types (CTs), whereas the vanB E. faecium isolate belonged to a different CT. ST203-CT859 was most prevalent (51%), followed by ST80-CT14 (22%), ST117-CT24 (6%), ST80-CT866 (4%) and ST80-CT860 (2%). Comparison with the cgMLST.org database, previous studies and personal communications with neighbouring countries revealed that the novel cluster ST203-CT859 emerged in December 2014 and spread to the south of Sweden and the Faroe Islands during 2015. Conclusions VRE increased in Denmark during 2005-15 due to the emergence of several vanA E. faecium clones.
Virulence | 2017
Solomon A. Mekonnen; Laura M. Palma Medina; Corinna Glasner; Eleni Tsompanidou; Anne de Jong; Stefano Grasso; Marc Schaffer; Ulrike Maeder; Anders Rhod Larsen; Heidi Gumpert; Henrik Westh; Uwe Voelker; Andreas Otto; Doerte Becher; Jan Maarten van Dijl
ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) is the common name for a heterogeneous group of highly drug-resistant staphylococci. Two major MRSA classes are distinguished based on epidemiology, namely community-associated (CA) and hospital-associated (HA) MRSA. Notably, the distinction of CA- and HA-MRSA based on molecular traits remains difficult due to the high genomic plasticity of S. aureus. Here we sought to pinpoint global distinguishing features of CA- and HA-MRSA through a comparative genome and proteome analysis of the notorious MRSA lineage USA300. We show for the first time that CA- and HA-MRSA isolates can be distinguished by 2 distinct extracellular protein abundance clusters that are predictive not only for epidemiologic behavior, but also for their growth and survival within epithelial cells. This ‘exoproteome profiling’ also groups more distantly related HA-MRSA isolates into the HA exoproteome cluster. Comparative genome analysis suggests that these distinctive features of CA- and HA-MRSA isolates relate predominantly to the accessory genome. Intriguingly, the identified exoproteome clusters differ in the relative abundance of typical cytoplasmic proteins, suggesting that signatures of cytoplasmic proteins in the exoproteome represent a new distinguishing feature of CA- and HA-MRSA. Our comparative genome and proteome analysis focuses attention on potentially distinctive roles of ‘liberated’ cytoplasmic proteins in the epidemiology and intracellular survival of CA- and HA-MRSA isolates. Such extracellular cytoplasmic proteins were recently invoked in staphylococcal virulence, but their implication in the epidemiology of MRSA is unprecedented.
Journal of global antimicrobial resistance | 2017
Roland Thele; Heidi Gumpert; Louise B. Christensen; Peder Worning; Kristian Schønning; Henrik Westh; Thomas Arn Hansen
The genus Kluyvera comprises potential pathogens that can cause many infections. This study reports a Kluyvera intermedia strain (FOSA7093) from a pancreatic cyst specimen from a long-term hospitalised patient. Whole-genome sequencing (WGS) of the K. intermedia isolate was performed and the strain was reported as sensitive to Danish-registered antibiotics although it had a fosA-like gene in the genome. There were nine contigs that aligned to a plasmid, and these contigs contained several heavy metal resistance gene homologues. Furthermore, a prophage was discovered in the genome. WGS represents an efficient tool for monitoring Kluyvera spp. and its role as a reservoir of multidrug resistance. Therefore, this susceptible K. intermedia genome has many characteristics that allow comparison of resistant K. intermedia that might be discovered in the future.