Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heidi M. Mansour is active.

Publication


Featured researches published by Heidi M. Mansour.


International Journal of Nanomedicine | 2009

Nanomedicine in pulmonary delivery

Heidi M. Mansour; Yun Seok Rhee; Xiao Wu

The lung is an attractive target for drug delivery due to noninvasive administration via inhalation aerosols, avoidance of first-pass metabolism, direct delivery to the site of action for the treatment of respiratory diseases, and the availability of a huge surface area for local drug action and systemic absorption of drug. Colloidal carriers (ie, nanocarrier systems) in pulmonary drug delivery offer many advantages such as the potential to achieve relatively uniform distribution of drug dose among the alveoli, achievement of improved solubility of the drug from its own aqueous solubility, a sustained drug release which consequently reduces dosing frequency, improves patient compliance, decreases incidence of side effects, and the potential of drug internalization by cells. This review focuses on the current status and explores the potential of colloidal carriers (ie, nanocarrier systems) in pulmonary drug delivery with special attention to their pharmaceutical aspects. Manufacturing processes, in vitro/in vivo evaluation methods, and regulatory/toxicity issues of nanomedicines in pulmonary delivery are also discussed.


International Journal of Pharmaceutics | 2012

Reversion of multidrug resistance by co-encapsulation of doxorubicin and curcumin in chitosan/poly(butyl cyanoacrylate) nanoparticles

Jinghua Duan; Heidi M. Mansour; Yangde Zhang; Xingming Deng; Yuxiang Chen; Jiwei Wang; Yifeng Pan; Jinfeng Zhao

Co-encapsulated doxorubicin (DOX) and curcumin (CUR) in poly(butyl cyanoacrylate) nanoparticles (PBCA-NPs) were prepared with emulsion polymerization and interfacial polymerization. The mean particle size and mean zeta potential of CUR-DOX-PBCA-NPs were 133 ± 5.34 nm in diameter and +32.23 ± 4.56 mV, respectively. The entrapment efficiencies of doxorubicin and curcumin were 49.98 ± 3.32% and 94.52 ± 3.14%, respectively. Anticancer activities and reversal efficacy of the formulations and various combination approaches were assessed using 3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyltetrazolium bromide assay and western blotting. The results showed that the dual-agent loaded PBCA-NPs system had the similar cytotoxicity to co-administration of two single-agent loaded PBCA-NPs (DOX-PBCA-NPs+CUR-PBCA-NPs), which was slightly higher than that of the free drug combination (DOX+CUR) and one free drug/another agent loaded PBCA-NPs combination (DOX+CUR-PBCA-NPs or CUR+DOX-PBCA-NPs). The simultaneous administration of doxorubicin and curcumin achieved the highest reversal efficacy and down-regulation of P-glycoprotein in MCF-7/ADR cell lines, an MCF-7 breast carcer cell line resistant to adriamycin. Multidrug resistance can be enhanced by combination delivery of encapsulated cytotoxic drugs and reversal agents.


International Journal of Molecular Sciences | 2010

Materials for Pharmaceutical Dosage Forms: Molecular Pharmaceutics and Controlled Release Drug Delivery Aspects

Heidi M. Mansour; Minji Sohn; Abeer M. Al-Ghananeem; Patrick P. DeLuca

Controlled release delivery is available for many routes of administration and offers many advantages (as microparticles and nanoparticles) over immediate release delivery. These advantages include reduced dosing frequency, better therapeutic control, fewer side effects, and, consequently, these dosage forms are well accepted by patients. Advances in polymer material science, particle engineering design, manufacture, and nanotechnology have led the way to the introduction of several marketed controlled release products and several more are in pre-clinical and clinical development.


Lung | 2012

Therapeutic Liposomal Dry Powder Inhalation Aerosols for Targeted Lung Delivery

Lauren Willis; Don Hayes; Heidi M. Mansour

Therapeutic liposomal powders (i.e., lipospheres and proliposomes) for dry powder inhalation aerosol delivery, formulated with phospholipids similar to endogenous lung surfactant, offer unique opportunities in pulmonary nanomedicine while offering controlled release and enhanced stability. Many pulmonary diseases such as lung cancer, tuberculosis (TB), cystic fibrosis (CF), bacterial and fungal lung infections, asthma, and chronic obstructive pulmonary disease (COPD) could greatly benefit from this type of pulmonary nanomedicine approach that can be delivered in a targeted manner by dry powder inhalers (DPIs). These delivery systems may require smaller doses for efficacy, exhibit reduced toxicity, fewer side effects, controlled drug release over a prolonged time period, and increased formulation stability as inhaled powders. This state-of-the-art review presents these novel aspects in depth.


European Journal of Pharmaceutical Sciences | 2013

Characterization and aerosol dispersion performance of advanced spray-dried chemotherapeutic PEGylated phospholipid particles for dry powder inhalation delivery in lung cancer.

Samantha A. Meenach; Kimberly W. Anderson; J. Zach Hilt; Ronald C. McGarry; Heidi M. Mansour

Pulmonary inhalation chemotherapeutic drug delivery offers many advantages for lung cancer patients in comparison to conventional systemic chemotherapy. Inhalable particles are advantageous in their ability to deliver drug deep in the lung by utilizing optimally sized particles and higher local drug dose delivery. In this work, spray-dried and co-spray dried inhalable lung surfactant-mimic PEGylated lipopolymers as microparticulate/nanoparticulate dry powders containing paclitaxel were rationally designed via organic solution advanced spray drying (no water) in closed-mode from dilute concentration feed solution. Dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) with varying PEG chain length were mixed with varying amounts of paclitaxel in methanol to produce co-spray dried microparticles and nanoparticles. Scanning electron microscopy showed the spherical particle morphology of the inhalable particles. Thermal analysis and X-ray powder diffraction confirmed the retention of the phospholipid bilayer structure in the solid-state following spray drying, the degree of solid-state molecular order, and solid-state phase transition behavior. The residual water content of the particles was very low as quantified analytically Karl Fisher titration. The amount of paclitaxel loaded into the particles was quantified which indicated high encapsulation efficiencies (43-99%). Dry powder aerosol dispersion performance was measured in vitro using the Next Generation Impactor (NGI) coupled with the Handihaler dry powder inhaler device and showed mass median aerodynamic diameters in the range of 3.4-7 μm. These results demonstrate that this novel microparticulate/nanoparticulate chemotherapeutic PEGylated phospholipid dry powder inhalation aerosol platform has great potential in lung cancer drug delivery.


Aaps Pharmscitech | 2007

Raman characterization and chemical imaging of biocolloidal self-assemblies, drug delivery systems, and pulmonary inhalation aerosols: a review.

Heidi M. Mansour; Anthony J. Hickey

This review presents an introduction to Raman scattering and describes the various Raman spectroscopy, Raman microscopy, and chemical imaging techniques that have demonstrated utility in biocolloidal self-assemblies, pharmaceutical drug delivery systems, and pulmonary research applications. Recent Raman applications to pharmaceutical aerosols in the context of pulmonary inhalation aerosol delivery are discussed. The “molecular fingerprint” insight that Raman applications provide includes molecular structure, drug-carrier/excipient interactions, intramolecular and intermolecular bonding, surface structure, surface and interfacial interactions, and the functional groups involved therein. The molecular, surface, and interfacial properties that Raman characterization can provide are particularly important in respirable pharmaceutical powders, as these particles possess a higher surface-area-to-volume ratio; hence, understanding the nature of these solid surfaces can enable their manipulation and tailoring for functionality at the nanometer level for targeted pulmonary delivery and deposition. Moreover, Raman mapping of aerosols at the micro- and nanometer level of resolution is achievable with new, sophisticated, commercially available Raman microspectroscopy techniques. This noninvasive, highly versatile analytical and imaging technique exhibits vast potential for in vitro and in vivo molecular investigations of pulmonary aerosol delivery, lung deposition, and pulmonary cellular drug uptake and disposition in unfixed living pulmonary cells.


Journal of Adhesion Science and Technology | 2011

Particle Interactions in Dry Powder Inhaler Unit Processes: A Review

Zhen Xu; Heidi M. Mansour; Anthony J. Hickey

Recent development and methods of designing and optimizing dry powder formulations have extended the therapeutic potential of inhaled dosage forms. Successful drug delivery as indicated by a high and reproducible fine particle fraction, required to achieve the desired therapeutic effect while minimizing potential toxicity, depends on an understanding of the physico-chemical properties of powder blends, their performance and availability of adequate tools to screen and predict their behavior. The scope of this review includes three important perspectives for inhaled drug delivery: (1) Fundamental aspects of interparticulate interactions of pharmaceutical dry powder aerosols at rest and in resuspension; (2) The influences of pharmaceutical processing including milling, mixing, filling and storage, and their influence on powder dispersion; (3) Current strategies for formulation optimization and methods for in vitro aerosolization performance prediction.


International Journal of Nanomedicine | 2013

Design, Physicochemical Characterization, and Optimization of Organic Solution Advanced Spray-Dried Inhalable Dipalmitoylphosphatidylcholine (DPPC) and Dipalmitoylphosphatidylethanolamine Poly(Ethylene Glycol) (DPPE-PEG) Microparticles and Nanoparticles for Targeted Respiratory Nanomedicine Delivery as Dry Powder Inhalation Aerosols

Samantha A. Meenach; Frederick G. Vogt; Kimberly W. Anderson; J. Zach Hilt; Ronald C. McGarry; Heidi M. Mansour

Novel advanced spray-dried and co-spray-dried inhalable lung surfactant-mimic phospholipid and poly(ethylene glycol) (PEG)ylated lipopolymers as microparticulate/nanoparticulate dry powders of biodegradable biocompatible lipopolymers were rationally formulated via an organic solution advanced spray-drying process in closed mode using various phospholipid formulations and rationally chosen spray-drying pump rates. Ratios of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine PEG (DPPE-PEG) with varying PEG lengths were mixed in a dilute methanol solution. Scanning electron microscopy images showed the smooth, spherical particle morphology of the inhalable particles. The size of the particles was statistically analyzed using the scanning electron micrographs and SigmaScan® software and were determined to be 600 nm to 1.2 μm in diameter, which is optimal for deep-lung alveolar penetration. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) were performed to analyze solid-state transitions and long-range molecular order, respectively, and allowed for the confirmation of the presence of phospholipid bilayers in the solid state of the particles. The residual water content of the particles was very low, as quantified analytically via Karl Fischer titration. The composition of the particles was confirmed using attenuated total-reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and confocal Raman microscopy (CRM), and chemical imaging confirmed the chemical homogeneity of the particles. The dry powder aerosol dispersion properties were evaluated using the Next Generation Impactor™ (NGI™) coupled with the HandiHaler® dry powder inhaler device, where the mass median aerodynamic diameter from 2.6 to 4.3 μm with excellent aerosol dispersion performance, as exemplified by high values of emitted dose, fine particle fraction, and respirable fraction. Overall, it was determined that the pump rates defined in the spray-drying process had a significant effect on the solid-state particle properties and that a higher pump rate produced the most optimal system. Advanced dry powder inhalers of inhalable lipopolymers for targeted dry powder inhalation delivery were successfully achieved.


International Journal of Pharmaceutics | 2013

Advanced spray-dried design, physicochemical characterization, and aerosol dispersion performance of vancomycin and clarithromycin multifunctional controlled release particles for targeted respiratory delivery as dry powder inhalation aerosols.

Chun Woong Park; Xiaojian Li; Frederick G. Vogt; Don Hayes; Joseph B. Zwischenberger; Eun Seok Park; Heidi M. Mansour

Respirable microparticles/nanoparticles of the antibiotics vancomycin (VCM) and clarithromycin (CLM) were successfully designed and developed by novel organic solution advanced spray drying from methanol solution. Formulation optimization was achieved through statistical experimental design of pump feeding rates of 25% (Low P), 50% (Medium P) and 75% (High P). Systematic and comprehensive physicochemical characterization and imaging were carried out using scanning electron microscopy (SEM), hot-stage microscopy (HSM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Karl Fischer titration (KFT), laser size diffraction (LSD), gravimetric vapor sorption (GVS), confocal Raman microscopy (CRM) and spectroscopy for chemical imaging mapping. These novel spray-dried (SD) microparticulate/nanoparticulate dry powders displayed excellent aerosol dispersion performance as dry powder inhalers (DPIs) with high values in emitted dose (ED), respirable fraction (RF), and fine particle fraction (FPF). VCM DPIs displayed better aerosol dispersion performance compared to CLM DPIs which was related to differences in the physicochemical and particle properties of VCM and CLM. In addition, organic solution advanced co-spray drying particle engineering design was employed to successfully produce co-spray-dried (co-SD) multifunctional microparticulate/nanoparticulate aerosol powder formulations of VCM and CLM with the essential lung surfactant phospholipid, dipalmitoylphosphatidylcholine (DPPC), for controlled release pulmonary nanomedicine delivery as inhalable dry powder aerosols. Formulation optimization was achieved through statistical experimental design of molar ratios of co-SD VCM:DPPC and co-SD CLM:DPPC. XRPD and DSC confirmed that the phospholipid bilayer structure in the solid-state was preserved following spray drying. Co-SD VCM:DPPC and co-SD CLM:DPPC dry powder aerosols demonstrated controlled release of antibiotic drug that was fitted to various controlled release mathematical fitting models. The Korsmeyer-Peppas model described the best data fit for all powders suggesting super case-II transport mechanism of controlled release. Excellent aerosol dispersion performance for all co-SD microparticulate/nanoparticulate DPIs was higher than the SD antibiotic drugs suggesting that DPPC acts as an aerosol performance enhancer for these antibiotic aerosol dry powders. Co-SD VCM:DPPC DPIs had higher aerosol dispersion parameters compared to co-SD CLM:DPPC which was related to differences in the physicochemical properties of VCM and CLM.


International Journal of Nanomedicine | 2013

Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery

Xiao Wu; Weifen Zhang; Don Hayes; Heidi M. Mansour

In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug – cyclosporine A – for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters.

Collaboration


Dive into the Heidi M. Mansour's collaboration.

Top Co-Authors

Avatar

Don Hayes

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Joseph D. Tobias

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Stephen Kirkby

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhen Xu

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Sylvester M. Black

The Ohio State University Wexner Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xiaojian Li

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge