Heidi Rempel
Agriculture and Agri-Food Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heidi Rempel.
Poultry Science | 2010
V. Furtula; E. G. Farrell; F. Diarrassouba; Heidi Rempel; J. Pritchard; Moussa S. Diarra
Veterinary pharmaceuticals are commonly used in poultry farming to prevent and treat microbial infections as well as to increase feed efficiency, but their use has created public and environmental health concerns. Poultry litter contains antimicrobial residues and resistant bacteria; when applied as fertilizer, the level and effects of these pharmaceuticals and antimicrobial-resistant bacteria in the environment are of concern. The purpose of this study was to investigate poultry litter for veterinary pharmaceuticals and resistance patterns of Escherichia coli. Litter samples were collected from controlled feeding trials and from commercial farms. Feed additives bacitracin, chlortetracycline, monensin, narasin, nicarbazin, penicillin, salinomycin, and virginiamycin, which were present in the feed on commercial farms and added to the feed in the controlled trials, were extracted in methanol and analyzed by liquid chromatography-mass spectrometry techniques. Sixty-nine E. coli were isolated and identified by API 20E. The susceptibility of the isolates to antibiotics was determined using Avian plates and the Sensititer automated system. This study confirmed the presence of antimicrobial residues in broiler litter from controlled environments as well as commercial farms, ranging from 0.07 to 66 mg/L depending on the compound. Concentrations of individual residues were higher in litter from controlled feeding trials than those from commercial farms. All E. coli isolates from commercial farms were multiresistant to at least 7 antibiotics. Resistance to beta-lactam antibiotics (amoxicillin, ceftiofur), tetracyclines, and sulfonamides was the most prevalent. This study concluded that broiler litter is a source of antimicrobial residues and represents a reservoir of multiple antibiotic-resistant E. coli.
Applied and Environmental Microbiology | 2010
Moussa S. Diarra; Heidi Rempel; Julie Champagne; Luke Masson; Jane Pritchard; Edward Topp
ABSTRACT Enterococci are now frequent causative agents of nosocomial infections. In this study, we analyzed the frequency and distribution of antibiotic resistance and virulence genotypes of Enterococcus isolates from broiler chickens. Fecal and cecal samples from nine commercial poultry farms were collected to quantify total enterococci. Sixty-nine presumptive enterococci were isolated and identified by API 20 Strep, and their susceptibilities to antibiotics were determined. Genotypes were assessed through the use of a novel DNA microarray carrying 70 taxonomic, 17 virulence, and 174 antibiotic resistance gene probes. Total enterococcal counts were different from farm to farm and between sample sources (P < 0.01). Fifty-one (74%) of the isolates were identified as E. faecium, whereas nine (13%), seven (10%), and two (3%) isolates were identified as E. hirae, E. faecalis, and E. gallinarum, respectively. Multiple-antibiotic resistance was evident in E. faecium and E. faecalis isolates. The most common multiple-antibiotic resistance phenotype was Bac Ery Tyl Lin Str Gen Tet Cip. Genes conferring resistance to aminoglycoside (aac, aacA-aphD, aadB, aphA, sat4), macrolide (ermA, ermB, ermAM, msrC), tetracycline (tetL, tetM, tetO), streptogramin (satG_vatE8), bacitracin (bcrR), and lincosamide (linB) antibiotics were detected in corresponding phenotypes. A range of 9 to 12 different virulence genes was found in E. faecalis, including ace, agg, agrBEfs (agrB gene of E. faecalis), cad1, the cAM373 and cCF10 genes, cob, cpd1, cylAB, efaAEfs, and gelE. All seven E. faecalis isolates were found to carry the gelE gene and to hydrolize gelatin and bile salts. Results from this study showed the presence of enterococci of public and environmental health concerns in broiler chicken farms and demonstrated the utility of a microarray to quickly and reliably analyze resistance and virulence genotypes of Enterococcus spp.
Journal of Food Protection | 2014
Moussa S. Diarra; Pascal Delaquis; Heidi Rempel; Susan Bach; Colleen Harlton; Mueen Aslam; Jane Pritchard; Edward Topp
The objective of this study was to analyze the antibiotic resistance phenotype and genotype of Salmonella isolated from broiler production facilities. A total of 193 Salmonella isolates recovered from commercial farms in British Columbia, Canada, were evaluated. Susceptibility to antibiotics was determined with the Sensititre system. Virulence and antibiotic resistance genes were detected by PCR assay. Genetic diversity was determined by pulse-field gel electrophoresis (PFGE) typing. Seventeen serovars of Salmonella were identified. The most prevalent Salmonella serovars were Kentucky (29.0% of isolates), Typhimurium (23.8%), Enteritidis (13.5%), and Hadar (11.9%); serovars Heidelberg, Brandenburg, and Thompson were identified in 7.7, 4.1, and 3.6% of isolates, respectively. More than 43% of the isolates were simultaneously resistant to ampicillin, amoxicillin-clavulanic acid, ceftiofur, cefoxitim, and ceftriaxone. This β-lactam resistance pattern was observed in 33 (58.9%) of the Salmonella Kentucky isolates; 2 of these isolates were also resistant to chloramphenicol, streptomycin, sulfisoxazole, and tetracycline. Genes associated with resistance to aminoglycosides (aadA1, aadA2, and strA), β-lactams (blaCMY-2, blaSHV, and blaTEM), tetracycline (tetA and tetB), and sulfonamide (sul1) were detected among corresponding resistant isolates. The invasin gene (invA) and the Salmonella plasmid virulence gene (spvC) were found in 97.9 and 25.9% of the isolates, respectively, with 33 (71.7%) of the 46 Salmonella Typhimurium isolates and 17 (65.4%) of the 26 Salmonella Enteritidis isolates carrying both invA and spvC. PGFE typing revealed that the antibiotic-resistant serovars were genetically diverse. These data confirm that broiler chickens can be colonized by genetically diverse antibiotic-resistant Salmonella isolates harboring virulence determinants. The presence of such strains is highly relevant to food safety and public health.
Poultry Science | 2010
G. Leusink; Heidi Rempel; B. Skura; M. Berkyto; W. White; Y. Yang; J. Y. Rhee; S. Y. Xuan; S. Chiu; F. G. Silversides; S. Fitzpatrick; Moussa S. Diarra
Cranberry fruit components have been reported to have antimicrobial activities against a variety of pathogenic bacteria and to be beneficial for human health. Studies on their effects are very limited in animals and especially in chickens. This study investigated the effect of feed supplementation with a commercial cranberry fruit extract (CFE) on the performance, breast meat quality, and intestinal integrity of broiler chickens. Twelve hundred male 1-d-old broiler chicks were allocated randomly to CFE treatments at 0, 40, 80, or 160 mg/kg of feed from d 0 to 35. Cloacal and cecal samples were collected weekly to evaluate the influence of treatments on the intestinal population of generic Escherichia coli, Clostridium perfringens, Enterococcus spp., and Lactobacillus spp. At d 35, BW were 1.62, 1.60, 1.61, and 1.64 kg for the control birds and birds fed 40, 80, and 160 mg of CFE/kg of feed, respectively. Feed intake ranged from 2.7 to 2.8 kg and feed efficiency from 1.8 to 1.9 g of feed/g of BW. However, the treatment effects on bird performance were not statistically significant (P > 0.05). The mortality rate tended to be lower (P = 0.09) in birds fed 40 mg of CFE/kg of feed. Feed supplementation with CFE did not significantly alter any broiler meat properties evaluated when compared with the control diet (P > 0.05). At d 28, the populations of Enterococcus spp. in cecal and cloacal samples were significantly lower (P < 0.05) in birds receiving CFE at 160 mg/kg of feed than the other groups. No significant differences were noted between the control and the treatment groups for general health and intestinal integrity (P > 0.05). These findings suggest that more studies are needed to investigate potential beneficial effects of CFE or its derivatives in broiler production.
Journal of Food Protection | 2009
Mueen Aslam; Moussa S. Diarra; Heidi Rempel
The goal of this study was to assess the distribution of antimicrobial resistance (AMR) genes in Escherichia coli isolates recovered from a commercial beef processing plant. A total of 123 antimicrobial-resistant E. coli isolates were used: 34 from animal hides, 10 from washed carcasses, 27 from conveyers for moving carcasses and meat, 26 from beef trimmings, and 26 from ground meat. The AMR genes for beta-lactamase (bla(CMY), bla(SHV), and bla(TEM), tetracycline (tet(A), tet(B), and tet(C)), sulfonamides (sul1, sul2, and sul3), and aminoglycoside (strA and strB) were detected by PCR assay. The distribution of tet(B), tet(C), sul1, bla(TEM), strA, and strB genes was significantly different among sample sources. E. coli isolates positive for the tet(B) gene and for both strA and strB genes together were significantly associated with hide, washed carcass, and ground meat samples, whereas sull gene was associated with washed carcass and beef trimming samples. The bla(TEM) gene was significantly associated with ground meat samples. About 50% of tetracycline-resistant E. coli isolates were positive for tet(A) (14%), tet(B) (15%), or tet(C) (21%) genes or both tet(B) and tet(C) genes together (3%). The sul2 gene or both sul1 and sul2 genes were found in 23% of sulfisoxazole-resistant E. coli isolates, whereas the sul3 gene was not found in any of the E. coli isolates tested. The majority of streptomycin-resistant E. coli isolates (76%) were positive for the strA and strB genes together. The bla(CMY), bla(TEM), and bla(SHV) genes were found in 12, 56, and 4%, respectively, of ampicillin-resistant E. coli isolates. These data suggest that E. coli isolates harboring AMR genes are widely distributed in meat processing environments and can create a pool of transferable resistance genes for pathogens. The results of this study underscore the need for effective hygienic and sanitation procedures in meat plants to reduce the risks of contamination with antimicrobial-resistant bacteria.
BMC Complementary and Alternative Medicine | 2013
Moussa S. Diarra; Glenn Block; Heidi Rempel; B. Dave Oomah; Judy Harrison; Jason McCallum; Simon Boulanger; Eric Brouillette; Mariza Gattuso; François Malouin
BackgroundCranberry fruits possess many biological activities partly due to their various phenolic compounds; however the underlying modes of action are poorly understood. We studied the effect of cranberry fruit extracts on the gene expression of Staphylococcus aureus to identify specific cellular processes involved in the antibacterial action.MethodsTranscriptional profiles of four S. aureus strains grown in broth supplemented or not with 2 mg/ml of a commercial cranberry preparation (Nutricran®90) were compared using DNA arrays to reveal gene modulations serving as markers for biological activity. Ethanol extracted pressed cakes from fresh fruits also produced various fractions and their effects on marker genes were demonstrated by qPCR. Minimal inhibitory concentrations (MICs) of the most effective cranberry fraction (FC111) were determined against multiple S. aureus strains and drug interactions with β-lactam antibiotics were also evaluated. Incorporation assays with [3H]-radiolabeled precursors were performed to evaluate the effect of FC111 on DNA, RNA, peptidoglycan (PG) and protein biosynthesis.ResultsTreatment of S. aureus with Nutricran®90 or FC111 revealed a transcriptional signature typical of PG-acting antibiotics (up-regulation of genes vraR/S, murZ, lytM, pbp2, sgtB, fmt). The effect of FC111 on PG was confirmed by the marked inhibition of incorporation of D-[3H]alanine. The combination of β-lactams and FC111 in checkerboard assays revealed a synergistic activity against S. aureus including strain MRSA COL, which showed a 512-fold drop of amoxicillin MIC in the presence of FC111 at MIC/8. Finally, a therapeutic proof of concept was established in a mouse mastitis model of infection. S. aureus-infected mammary glands were treated with amoxicillin, FC111 or a combination of both; only the combination significantly reduced bacterial counts from infected glands (P<0.05) compared to the untreated mice.ConclusionsThe cranberry fraction FC111 affects PG synthesis of S. aureus and acts in synergy with β-lactam antibiotics. Such a fraction easily obtained from poorly exploited press-cake residues, may find interesting applications in the agri-food sector and help reduce antibiotic usage in animal food production.
Poultry Science | 2012
Vincenzo Forgetta; Heidi Rempel; François Malouin; R. J. Vaillancourt; Edward Topp; Ken Dewar; Moussa S. Diarra
An Escherichia spp. isolate, ECD-227, was previously identified from the broiler chicken as a phylogenetically divergent and multidrug-resistant Escherichia coli possessing numerous virulence genes. In this study, whole genome sequencing and comparative genome analysis was used to further characterize this isolate. The presence of known and putative antibiotic resistance and virulence open reading frames were determined by comparison to pathogenic (E. coli O157:H7 TW14359, APEC O1:K1:H7, and UPEC UTI89) and nonpathogenic species (E. coli K-12 MG1655 and Escherichia fergusonii ATCC 35469). The assembled genome size of 4.87 Mb was sequenced to 18-fold depth of coverage and predicted to contain 4,376 open reading frames. Phylogenetic analysis of 537 open reading frames present across 110 enteric bacterial species identifies ECD-227 to be E. fergusonii. The genome of ECD-227 contains 5 plasmids showing similarity to known E. coli and Salmonella enterica plasmids. The presence of virulence and antibiotic resistance genes were identified and localized to the chromosome and plasmids. The mutation in gyrA (S83L) involved in fluoroquinolone resistance was identified. The Salmonella-like plasmids harbor antibiotic resistance genes on a class I integron (aadA, qacEΔ-sul1, aac3-VI, and sulI) as well as numerous virulence genes (iucABCD, sitABCD, cib, traT). In addition to the genome analysis, the virulence of ECD-227 was evaluated in a 1-d-old chick model. In the virulence assay, ECD-227 was found to induce 18 to 30% mortality in 1-d-old chicks after 24 h and 48 h of infection, respectively. This study documents an avian multidrug-resistant and virulent E. fergusonii. The existence of several resistance genes to multiple classes of antibiotics indicates that infection caused by ECD-227 would be difficult to treat using antimicrobials currently available for poultry.
Applied and Environmental Microbiology | 2011
Julie Champagne; Moussa S. Diarra; Heidi Rempel; Edward Topp; Charles W. Greer; Josée Harel; Luke Masson
ABSTRACT A DNA microarray (Enteroarray) was designed with probes targeting four species-specific taxonomic identifiers to discriminate among 18 different enterococcal species, while other probes were designed to identify 18 virulence factors and 174 antibiotic resistance genes. In total, 262 genes were utilized for rapid species identification of enterococcal isolates, while characterizing their virulence potential through the simultaneous identification of endogenous antibiotic resistance and virulence genes. Enterococcal isolates from broiler chicken farms were initially identified by using the API 20 Strep system, and the results were compared to those obtained with the taxonomic genes atpA, recA, pheS, and ddl represented on our microarray. Among the 171 isolates studied, five different enterococcal species were identified by using the API 20 Strep system: Enterococcus faecium, E. faecalis, E. durans, E. gallinarum, and E. avium. The Enteroarray detected the same species as API 20 Strep, as well as two more: E. casseliflavus and E. hirae. Species comparisons resulted in 15% (27 isolates) disagreement between the two methods among the five API 20 Strep identifiable species and 24% (42 isolates) disagreement when considering the seven Enteroarray identified species. The species specificity of key antibiotic and virulence genes identified by the Enteroarray were consistent with the literature adding further robustness to the redundant taxonomic probe data. Sequencing of the cpn60 gene further confirmed the complete accuracy of the microarray results. The new Enteroarray should prove to be a useful tool to accurately genotype strains of enterococci and assess their virulence potential.
International Journal of Food Microbiology | 2014
Mueen Aslam; Mehdi Toufeer; Claudia Narvaez Bravo; Vita Lai; Heidi Rempel; Amee R. Manges; Moussa S. Diarra
Extraintestinal Pathogenic Escherichia coli (ExPEC) have the potential to spread through fecal waste resulting in the contamination of both farm workers and retail poultry meat in the processing plants or environment. The objective of this study was to characterize ExPEC from retail poultry meats purchased from Alberta, Canada and to compare them with 12 human ExPEC representatives from major ExPEC lineages. Fifty-four virulence genes were screened by a set of multiplex PCRs in 700 E. coli from retail poultry meat samples. ExPEC was defined as the detection of at least two of the following virulence genes: papA/papC, sfa, kpsMT II and iutA. Genetic relationships between isolates were determined using pulsed field gel electrophoresis (PFGE). Fifty-nine (8.4%) of the 700 poultry meat isolates were identified as ExPEC and were equally distributed among the phylogenetic groups A, B1, B2 and D. Isolates of phylogenetic group A possessed up to 12 virulence genes compared to 24 and 18 genes in phylogenetic groups B2 and D, respectively. E. coli identified as ExPEC and recovered from poultry harbored as many virulence genes as those of human isolates. In addition to the iutA gene, siderophore-related iroN and fyuA were detected in combination with other virulence genes including those genes encoding for adhesion, protectin and toxin while the fimH, ompT, traT, uidA and vat were commonly detected in poultry ExPEC. The hemF, iss and cvaC genes were found in 40% of poultry ExPEC. All human ExPEC isolates harbored concnf (cytotoxic necrotizing factor 1 altering cytoskeleton and causing necrosis) and hlyD (hemolysin transport) genes which were not found in poultry ExPEC. PFGE analysis showed that a few poultry ExPEC isolates clustered with human ExPEC isolates at 55-70% similarity level. Comparing ExPEC isolated from retail poultry meats provides insight into their virulence potential and suggests that poultry associated ExPEC may be important for retail meat safety. Investigations into the ability of our poultry ExPEC to cause human infections are warranted.
Poultry Science | 2012
Javier Vela; Kelsie Hildebrandt; Andrew Metcalfe; Heidi Rempel; Shabtai Bittman; Edward Topp; Moussa S. Diarra
In this study we isolated and characterized Staphylococcus xylosus, a coagulase-negative staphylococcal species considered as commensal and one of the prevalent staphylococcal species found in poultry bioaerosol. Isolates were obtained using air samplers and selective phenylethyl alcohol agar for gram-positive bacteria during 35-d periods at different times of the day. A total of 200 colonies were recovered and after basic biochemical tests were performed, presumptive staphylococci were subsequently identified by API Staph strips. A total of 153 (76.5%) staphylococci were found, among which 84 were S. xylosus (46 and 38 isolated inside and outside, respectively). Biofilm formation was observed in 86.9% of S. xylosus isolates, whereas 79.8% of them showed hemolytic activity. There was a strong correlation (92.5%) between biofilm formation and hemolytic activity. All 84 S. xylosus isolates were susceptible to amikacin, ampicillin/sulbactam, chloramphenicol, ciprofloxacin, gentamycin, kanamycin, linezolid, trimethoprim/sulfamethoxazole, and vancomycin. Resistance to nalidixic acid (86.9%), novobiocin (85.7%), penicillin (70.2%), lincomycin (46.4%), oxacillin (42.9%), ampicillin (27.4%), tetracycline (21.4%), erythromycin (11.9%), bacitracin (10.7%), and streptomycin (2.4%) was observed among the isolates. Resistance to tetracycline, lincomycin, erythromycin, and β-lactam antibiotics was occasionally linked to the tetK, linA, ermB, and blaZ genes, respectively. Random amplification of polymorphic DNA results showed similarity of 15 to 99% between isolates collected outside and inside the barn, indicating genetic diversity of these isolates. Our study indicates that characterization of poultry bioaerosol coagulase-negative staphylococcal species such as S. xylosus is necessary for assessing their safety status for both poultry and humans.