Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heidi Stöhr is active.

Publication


Featured researches published by Heidi Stöhr.


American Journal of Human Genetics | 2000

A Comprehensive Survey of Sequence Variation in the ABCA4 (ABCR) Gene in Stargardt Disease and Age-Related Macular Degeneration

Andrea Rivera; Karen L. White; Heidi Stöhr; Klaus Steiner; Nadine Hemmrich; Timo Grimm; Bernhard Jurklies; Birgit Lorenz; Hendrik P. N. Scholl; Eckhart Apfelstedt-Sylla; Bernhard H. F. Weber

Stargardt disease (STGD) is a common autosomal recessive maculopathy of early and young-adult onset and is caused by alterations in the gene encoding the photoreceptor-specific ATP-binding cassette (ABC) transporter (ABCA4). We have studied 144 patients with STGD and 220 unaffected individuals ascertained from the German population, to complete a comprehensive, population-specific survey of the sequence variation in the ABCA4 gene. In addition, we have assessed the proposed role for ABCA4 in age-related macular degeneration (AMD), a common cause of late-onset blindness, by studying 200 affected individuals with late-stage disease. Using a screening strategy based primarily on denaturing gradient gel electrophoresis, we have identified in the three study groups a total of 127 unique alterations, of which 90 have not been previously reported, and have classified 72 as probable pathogenic mutations. Of the 288 STGD chromosomes studied, mutations were identified in 166, resulting in a detection rate of approximately 58%. Eight different alleles account for 61% of the identified disease alleles, and at least one of these, the L541P-A1038V complex allele, appears to be a founder mutation in the German population. When the group with AMD and the control group were analyzed with the same methodology, 18 patients with AMD and 12 controls were found to harbor possible disease-associated alterations. This represents no significant difference between the two groups; however, for detection of modest effects of rare alleles in complex diseases, the analysis of larger cohorts of patients may be required.


The Journal of Neuroscience | 2009

TMEM16B, A Novel Protein with Calcium-Dependent Chloride Channel Activity, Associates with a Presynaptic Protein Complex in Photoreceptor Terminals

Heidi Stöhr; Julia B. Heisig; Peter M. Benz; Simon Schöberl; Vladimir M. Milenkovic; Olaf Strauss; Wendy M. Aartsen; Jan Wijnholds; Bernhard H. F. Weber; Heidi L. Schulz

Photoreceptor ribbon synapses release glutamate in response to graded changes in membrane potential evoked by vast, logarithmically scalable light intensities. Neurotransmitter release is modulated by intracellular calcium levels. Large Ca2+-dependent chloride currents are important regulators of synaptic transmission from photoreceptors to second-order neurons; the molecular basis underlying these currents is unclear. We cloned human and mouse TMEM16B, a member of the TMEM16 family of transmembrane proteins, and show that it is abundantly present in the photoreceptor synaptic terminals in mouse retina. TMEM16B colocalizes with adaptor proteins PSD95, VELI3, and MPP4 at the ribbon synapses and contains a consensus PDZ class I binding motif capable of interacting with PDZ domains of PSD95. Furthermore, TMEM16B is lost from photoreceptor membranes of MPP4-deficient mice. This suggests that TMEM16B is a novel component of a presynaptic protein complex recruited to specialized plasma membrane domains of photoreceptors. TMEM16B confers Ca2+-dependent chloride currents when overexpressed in mammalian cells as measured by halide sensitive fluorescent protein assays and whole-cell patch-clamp recordings. The compartmentalized localization and the electrophysiological properties suggest TMEM16B to be a strong candidate for the long sought-after Ca2+-dependent chloride channel in the photoreceptor synapse.


European Journal of Human Genetics | 2002

Three novel human VMD2-like genes are members of the evolutionary highly conserved RFP-TM family

Heidi Stöhr; Andreas Marquardt; Indrajit Nanda; Michael Schmid; Bernhard H. F. Weber

The RFP-TM protein family was first described in Caenorhabditis elegans as hypothetical transmembrane proteins containing a conserved 350–400 amino acid domain including the invariant peptide motif RFP. The VMD2 gene underlying Best disease was shown to represent the first human member of the RFP-TM protein family. More than 97% of the disease-causing mutations are located in the N-terminal RFP-TM domain implying important functional properties. Here, we have identified three novel VMD2-related human genes (VMD2L1, VMD2L2 and VMD2L3) demonstrating a high degree of conservation in their respective RFP-TM domains. Each of the VMD2-like proteins has a unique C-terminus that lack similarity to other proteins or motifs. By FISH analysis, VMD2L1 was localised to chromosome 19p13.2-p13.12, VMD2L2 to 1p32.3-p33 and VMD2L3 to 12q14.2-q15. RT–PCR analyses revealed tissue-restricted expression of the three genes with both VMD2L1 and VMD2L2 abundantly transcribed in colon. VMD2L1 is present in the retinal pigment epithelium while VMD2L3 shows predominant expression in skeletal muscle.


Gene | 2002

A novel gene encoding a putative transmembrane protein with two extracellular CUB domains and a low-density lipoprotein class A module: isolation of alternatively spliced isoforms in retina and brain

Heidi Stöhr; Claudia Berger; Susanne Fröhlich; Bernhard H. F. Weber

We report herein the cDNA cloning of a novel retina and brain specific gene from mouse and human encoding a putative transmembrane protein with an N-terminal signal sequence and two conserved extracellular CUB domains followed by a single copy of the low-density lipoprotein class A (LDLa) module. The mouse and human genes, termed NETO1 (neuropilin and tolloid like-1), display sequence identities of 87% at the nucleotide and 95% at the protein level. The human NETO1 gene comprises 13 exons on chromosome 18q22-q23 and gives rise to three different mRNA isoforms. Two alternative leader exons 1a and 1b generate transcripts that translate into putative signal peptides with individual sequence composition but otherwise do not affect the primary structure of the mature NETO1 protein. Usage of the internal exon 5 is restricted to the retinal tissue and generates a truncated transcript that codes for a putative soluble protein, termed sNETO1, with only one copy of the CUB domain while lacking the LDLa module. NETO1 exhibits 57% identity to the deduced amino acid sequence of a non-annotated nucleotide sequence in the GenBank database, therefore designated NETO2. Both NETO1 and NETO2 share an identical and unique domain structure thus representing a novel subfamily of CUB- and LDLa-containing proteins. The cytoplasmic domains of NETO1 and NETO2 are not homologous to other known protein sequences but contain a conserved FXNPXY-like motif, which is essential for the internalization of clathrin coated pits during endocytosis or alternatively, may be implicated in intracellular signaling pathways.


American Journal of Human Genetics | 2010

Nonsense Mutations in FAM161A Cause RP28-Associated Recessive Retinitis Pigmentosa

Thomas Langmann; Silvio Alessandro Di Gioia; Isabella Rau; Heidi Stöhr; Nela S. Maksimovic; Joseph C. Corbo; Agnes B. Renner; Eberhart Zrenner; Govindasamy Kumaramanickavel; Marcus Karlstetter; Yvan Arsenijevic; Bernhard H. F. Weber; Andreas Gal; Carlo Rivolta

Retinitis pigmentosa (RP) is a degenerative disease of the retina leading to progressive loss of vision and, in many instances, to legal blindness at the end stage. The RP28 locus was assigned in 1999 to the short arm of chromosome 2 by homozygosity mapping in a large Indian family segregating autosomal-recessive RP (arRP). Following a combined approach of chromatin immunoprecipitation and parallel sequencing of genomic DNA, we identified a gene, FAM161A, which was shown to carry a homozygous nonsense mutation (p.Arg229X) in patients from the original RP28 pedigree. Another homozygous FAM161A stop mutation (p.Arg437X) was detected in three subjects from a cohort of 118 apparently unrelated German RP patients. Age at disease onset in these patients was in the second to third decade, with severe visual handicap in the fifth decade and legal blindness in the sixth to seventh decades. FAM161A is a phylogenetically conserved gene, expressed in the retina at relatively high levels and encoding a putative 76 kDa protein of unknown function. In the mouse retina, Fam161a mRNA is developmentally regulated and controlled by the transcription factor Crx, as demonstrated by chromatin immunoprecipitation and organotypic reporter assays on explanted retinas. Fam161a protein localizes to photoreceptor cells during development, and in adult animals it is present in the inner segment as well as the outer plexiform layer of the retina, the synaptic interface between photoreceptors and their efferent neurons. Taken together, our data indicate that null mutations in FAM161A are responsible for the RP28-associated arRP.


Investigative Ophthalmology & Visual Science | 2008

Abnormal Vessel Formation in the Choroid of Mice Lacking Tissue Inhibitor of Metalloprotease-3

Andreas Janssen; Julia Hoellenriegel; Marton Fogarasi; Heinrich Schrewe; Mathias W. Seeliger; Ernst R. Tamm; Andreas Ohlmann; Christian Albrecht May; Bernhard H. F. Weber; Heidi Stöhr

PURPOSE Tissue inhibitor of metalloprotease (TIMP)-3 is an inhibitor of matrix metalloprotease (MMP) and regulates angiogenesis. In the eye, TIMP3 is tightly associated with Bruchs membrane. In this study, the authors analyzed mice lacking TIMP3 for retinal abnormalities. METHODS Mice with targeted disruption of the Timp3 gene were generated (Timp3(-/-)) and bred into C57/Bl6 and CD1 backgrounds. Eyes were analyzed by light and electron microscopy. Vasculature was examined by scanning laser ophthalmoscopy, corrosion casts, and whole mount preparations. MMP activity was assessed by in situ zymography, angiogenic potential was evaluated by tube formation, and aortic ring assays and signaling pathways were studied by immunoblotting. RESULTS TIMP3-deficient mice develop abnormal vessels with dilated capillaries throughout the choroid. Enhanced MMP activity in the choroid region of Timp3(-/-) eyes was detected when compared with controls. Timp3(-/-)-derived tissue showed an increased angiogenic activity over wild-type, an effect that could specifically be inhibited by recombinant TIMP3. Moreover, the antiangiogenic property of TIMP3 was demonstrated to reside within the C-terminal domain. When VEGFR2 inhibitor was added to Timp3(-/-) aortic explants, endothelial sprout formation was markedly reduced, which provided evidence for an unbalanced VEGF-mediated angiogenesis in Timp3(-/-) animals. Finally, angiogenic signaling pathways are activated in Timp3(-/-)-derived cells. CONCLUSIONS These findings suggest that the distinct choroidal phenotype in mice lacking TIMP3 may be the result of a local disruption of extracellular matrix and angiogenic homeostasis, and they support an important role of TIMP3 in the regulation of choroidal vascularization.


BMC Evolutionary Biology | 2010

Evolution and functional divergence of the anoctamin family of membrane proteins

Vladimir M. Milenkovic; Marisa Brockmann; Heidi Stöhr; Bernhard H. F. Weber; Olaf Strauss

BackgroundThe anoctamin family of transmembrane proteins are found in all eukaryotes and consists of 10 members in vertebrates. Ano1 and ano2 were observed to have Ca2+ activated Cl- channel activity. Recent findings however have revealed that ano6, and ano7 can also produce chloride currents, although with different properties. In contrast, ano9 and ano10 suppress baseline Cl- conductance when co-expressed with ano1 thus suggesting that different anoctamins can interfere with each other. In order to elucidate intrinsic functional diversity, and underlying evolutionary mechanism among anoctamins, we performed comprehensive bioinformatics analysis of anoctamin gene family.ResultsOur results show that anoctamin protein paralogs evolved from several gene duplication events followed by functional divergence of vertebrate anoctamins. Most of the amino acid replacements responsible for the functional divergence were fixed by adaptive evolution and this seem to be a common pattern in anoctamin gene family evolution. Strong purifying selection and the loss of many gene duplication products indicate rigid structure-function relationships among anoctamins.ConclusionsOur study suggests that anoctamins have evolved by series of duplication events, and that they are constrained by purifying selection. In addition we identified a number of protein domains, and amino acid residues which contribute to predicted functional divergence. Hopefully, this work will facilitate future functional characterization of the anoctamin membrane protein family.


The Journal of Comparative Neurology | 2005

Membrane-associated guanylate kinase proteins MPP4 and MPP5 associate with Veli3 at distinct intercellular junctions of the neurosensory retina.

Heidi Stöhr; Laurie L. Molday; Robert S. Molday; Bernhard H. F. Weber; Bernd Biedermann; Andreas Reichenbach; Franziska Krämer

MPP4 and MPP5 are closely related members of the p55‐subfamily of membrane‐associated guanylate kinases (MAGUKs) known to mediate the assembly of protein complexes at the plasma membrane of cell–cell junctions. Both MPP4 and MPP5 have been implicated in retinal function; however, their specific roles in the cellular mechanisms underlying vision are largely unknown. Here, we generated specific poly‐ and monoclonal antibodies against the two proteins and show that MPP4 and MPP5 are localized at distinct sites of cell–cell contact in the mouse retina. While MPP4 is a component of the synaptic terminals of photoreceptors, MPP5 exclusively localizes to apical membrane domains of the outer limiting membrane (OLM) junctions. The vertebrate homologs of Caenorhabditis elegans lin‐7, Veli1, ‐2, and ‐3, have previously been identified as putative binding partners of MPP5. In this study, we show that MPP4 directly interacts with the Veli proteins via L27 heterodimerization in vitro. In addition, two of the three Veli isoforms, Veli1 and ‐3, are demonstrated to be expressed in the mouse retina. Immunofluorescence microscopy reveals extensive colocalization of Veli3 with both MPP4 and MPP5. This association of Veli3 with either MPP4 or MPP5 suggests that the MAGUKs recruit Veli3 and its binding partners to different cellular regions of the retina where they may participate in the organization of specialized intercellular junctions. J. Comp. Neurol. 481:31–41, 2005.


Human Molecular Genetics | 2011

The Na/K-ATPase is obligatory for membrane anchorage of retinoschisin, the protein involved in the pathogenesis of X-linked juvenile retinoschisis

Ulrike Friedrich; Heidi Stöhr; Daniela Hilfinger; Thomas Loenhardt; Melitta Schachner; Thomas Langmann; Bernhard H. F. Weber

Mutations in the RS1 gene that encodes the discoidin domain containing retinoschisin cause X-linked juvenile retinoschisis (XLRS), a common macular degeneration in males. Disorganization of retinal layers and electroretinogram abnormalities are hallmarks of the disease and are also found in mice deficient for the orthologous murine protein, indicating that retinoschisin is important for the maintenance of retinal cell integrity. Upon secretion, retinoschisin associates with plasma membranes of photoreceptor and bipolar cells, although the components by which the protein is linked to membranes in vivo are still unclear. Here, we show that retinoschisin fails to bind to phospholipids or unilamellar lipid vesicles. A recent proteomic approach identified the Na/K-ATPase subunits ATP1A3 and ATP1B2 as binding partners of retinoschisin. We analyzed mice deficient for retinoschisin (Rs1h(-/Y)) and ATP1B2 (Atp1b2(-/-)) to characterize the role of Na/K-ATPase interaction in the organization of retinoschisin on cellular membranes. We demonstrate that both the Na/K-ATPase and retinoschisin are significantly reduced in Atp1b2(-/-) retinas, suggesting that retinoschisin membrane association is severely impaired in the absence of ATP1A3 and ATP1B2 subunits. Conversely, the presence of ATP1A3 and ATP1B2 are obligatory for binding of exogenously applied retinoschisin to crude membranes. Also, co-expression of ATP1A3 and ATP1B2 is required for retinoschisin binding to intact Hek293 cells. Taken together, our data support a predominant role of Na/K-ATPase in anchoring retinoschisin to retinal cell surfaces. Furthermore, altered localization of ATP1A3 and ATP1B2 is a notable consequence of retinoschisin deficiency and thus may be an important downstream aspect of cellular pathology in XLRS.


Journal of Biological Chemistry | 2009

S156C Mutation in Tissue Inhibitor of Metalloproteinases-3 Induces Increased Angiogenesis

Jian Hua Qi; Ganying Dai; Philip J. Luthert; Shyam Chaurasia; Joe G. Hollyfield; Bernhard H. F. Weber; Heidi Stöhr; Bela Anand-Apte

Tissue Inhibitor of metalloproteinases-3 (TIMP-3) is a potent matrix-bound angiogenesis inhibitor. Mutations in TIMP-3 cause Sorsby Fundus Dystrophy, a dominant inherited, early onset macular degenerative disease, with choroidal neovascularization causing a loss of vision in the majority of patients. Here we report that expression of S156C TIMP-3 mutation in endothelial cells results in an abnormal localization of the protein, increased gly co sy la tion, decreased matrix metalloproteinase inhibitory activity, and increased vascular endothelial growth factor (VEGF) binding with a consequent increase in VEGF-de pend ent migration and tube formation. These enhanced signaling events appear to be mediated as a consequence of a post-transcriptionally regulated increase in the expression of membrane-associated VEGFR-2 in endothelial cells of Timp-3156/156 mutant mice as well as in human Sorsby fundus dystrophy eyes. Understanding the mechanism(s) by which mutant TIMP-3 can induce abnormal neovascularization provides important insight into the pathophysiology of a number of diseases with increased angiogenesis.

Collaboration


Dive into the Heidi Stöhr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Rivera

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Zach

University of Regensburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge