Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heidi Tuominen is active.

Publication


Featured researches published by Heidi Tuominen.


ACS Chemical Biology | 2011

The CBS domain: a protein module with an emerging prominent role in regulation.

Alexander A. Baykov; Heidi Tuominen; Reijo Lahti

Regulatory CBS (cystathionine β-synthase) domains exist as two or four tandem copies in thousands of cytosolic and membrane-associated proteins from all kingdoms of life. Mutations in the CBS domains of human enzymes and membrane channels are associated with an array of hereditary diseases. Four CBS domains encoded within a single polypeptide or two identical polypeptides (each having a pair of CBS domains at the subunit interface) form a highly conserved disk-like structure. CBS domains act as autoinhibitory regulatory units in some proteins and activate or further inhibit protein function upon binding to adenosine nucleotides (AMP, ADP, ATP, S-adenosyl methionine, NAD, diadenosine polyphosphates). As a result of the differential effects of the nucleotides, CBS domain-containing proteins can sense cell energy levels. Significant conformational changes are induced in CBS domains by bound ligands, highlighting the structural basis for their effects.


Biochemical Journal | 2007

A CBS domain-containing pyrophosphatase of Moorella thermoacetica is regulated by adenine nucleotides

Joonas Jämsen; Heidi Tuominen; Anu Salminen; Georgiy A. Belogurov; Natalia N. Magretova; Alexander A. Baykov; Reijo Lahti

CBS (cystathionine beta-synthase) domains are found in proteins from all kingdoms of life, and point mutations in these domains are responsible for a variety of hereditary diseases in humans; however, the functions of CBS domains are not well understood. In the present study, we cloned, expressed in Escherichia coli, and characterized a family II PPase (inorganic pyrophosphatase) from Moorella thermoacetica (mtCBS-PPase) that has a pair of tandem 60-amino-acid CBS domains within its N-terminal domain. Because mtCBS-PPase is a dimer and requires transition metal ions (Co2+ or Mn2+) for activity, it resembles common family II PPases, which lack CBS domains. The mtCBS-PPase, however, has lower activity than common family II PPases, is potently inhibited by ADP and AMP, and is activated up to 1.6-fold by ATP. Inhibition by AMP is competitive, whereas inhibition by ADP and activation by ATP are both of mixed types. The nucleotides are effective at nanomolar (ADP) or micromolar concentrations (AMP and ATP) and appear to compete for the same site on the enzyme. The nucleotide-binding affinities are thus 100-10000-fold higher than for other CBS-domain-containing proteins. Interestingly, genes encoding CBS-PPase occur most frequently in bacteria that have a membrane-bound H+-translocating PPase with a comparable PP(i)-hydrolysing activity. Our results suggest that soluble nucleotide-regulated PPases act as amplifiers of metabolism in bacteria by enhancing or suppressing ATP production and biosynthetic reactions at high and low [ATP]/([AMP]+[ADP]) ratios respectively.


PLOS ONE | 2013

Identification of a novel bacterial outer membrane interleukin-1Β-binding protein from Aggregatibacter actinomycetemcomitans.

Annamari Paino; Tuuli Ahlstrand; Jari Nuutila; Indre Navickaite; Maria Lahti; Heidi Tuominen; Hannamari Välimaa; Urpo Lamminmäki; Marja T. Pöllänen; Riikka Ihalin

Aggregatibacter actinomycetemcomitans is a gram-negative opportunistic oral pathogen. It is frequently associated with subgingival biofilms of both chronic and aggressive periodontitis, and the diseased sites of the periodontium exhibit increased levels of the proinflammatory mediator interleukin (IL)-1β. Some bacterial species can alter their physiological properties as a result of sensing IL-1β. We have recently shown that this cytokine localizes to the cytoplasm of A. actinomycetemcomitans in co-cultures with organotypic gingival mucosa. However, current knowledge about the mechanism underlying bacterial IL-1β sensing is still limited. In this study, we characterized the interaction of A. actinomycetemcomitans total membrane protein with IL-1β through electrophoretic mobility shift assays. The interacting protein, which we have designated bacterial interleukin receptor I (BilRI), was identified through mass spectrometry and was found to be Pasteurellaceae specific. Based on the results obtained using protein function prediction tools, this protein localizes to the outer membrane and contains a typical lipoprotein signal sequence. All six tested biofilm cultures of clinical A. actinomycetemcomitans strains expressed the protein according to phage display-derived antibody detection. Moreover, proteinase K treatment of whole A. actinomycetemcomitans cells eliminated BilRI forms that were outer membrane specific, as determined through immunoblotting. The protein was overexpressed in Escherichia coli in both the outer membrane-associated form and a soluble cytoplasmic form. When assessed using flow cytometry, the BilRI-overexpressing E. coli cells were observed to bind 2.5 times more biotinylated-IL-1β than the control cells, as detected with avidin-FITC. Overexpression of BilRI did not cause binding of a biotinylated negative control protein. In a microplate assay, soluble BilRI bound to IL-1β, but this binding was not specific, as a control protein for IL-1β also interacted with BilRI. Our findings suggest that A. actinomycetemcomitans expresses an IL-1β-binding surface-exposed lipoprotein that may be part of the bacterial IL-1β-sensing system.


PLOS ONE | 2011

Trimeric form of intracellular ATP synthase subunit β of Aggregatibacter actinomycetemcomitans binds human interleukin-1β.

Annamari Paino; Heidi Tuominen; Mari Jääskeläinen; Jari Nuutila; Sirkka Asikainen; Lauri J. Pelliniemi; Marja T. Pöllänen; Casey Chen; Riikka Ihalin

Bacterial biofilms resist host defenses and antibiotics partly because of their decreased metabolism. Some bacteria use proinflammatory cytokines, such as interleukin (IL)-1β, as cues to promote biofilm formation and to alter virulence. Although one potential bacterial IL-1β receptor has been identified, current knowledge of the bacterial IL-1β sensing mechanism is limited. In chronic biofilm infection, periodontitis, Aggregatibacter actinomycetemcomitans requires tight adherence (tad)-locus to form biofilms, and tissue destroying active lesions contain more IL-1β than inactive ones. The effect of IL-1β on the metabolic activity of A. actinomycetemcomitans biofilm was tested using alamarBlue™. The binding of IL-1β to A. actinomycetemcomitans cells was investigated using transmission electron microscopy and flow cytometry. To identify the proteins which interacted with IL-1β, different protein fractions from A. actinomycetemcomitans were run in native-PAGE and blotted using biotinylated IL-1β and avidin-HRP, and identified using mass spectroscopy. We show that although IL-1β slightly increases the biofilm formation of A. actinomycetemcomitans, it reduces the metabolic activity of the biofilm. A similar reduction was observed with all tad-locus mutants except the secretin mutant, although all tested mutant strains as well as wild type strains bound IL-1β. Our results suggest that IL-1β might be transported into the A. actinomycetemcomitans cells, and the trimeric form of intracellular ATP synthase subunit β interacted with IL-1β, possibly explaining the decreased metabolic activity. Because ATP synthase is highly conserved, it might universally enhance biofilm resistance to host defense by binding IL-1β during inflammation.


Cytokine | 2012

Interleukin-1β is internalised by viable Aggregatibacter actinomycetemcomitans biofilm and locates to the outer edges of nucleoids

Annamari Paino; Elina Lohermaa; Raija Sormunen; Heidi Tuominen; Jari Korhonen; Marja T. Pöllänen; Riikka Ihalin

The opportunistic pathogen Aggregatibacter actinomycetemcomitans causes periodontitis, which is a biofilm infection that destroys tooth-supportive tissues. Interleukin (IL)-1β, a central proinflammatory cytokine of periodontitis, is an essential first line cytokine for local inflammation that modulates the cell proliferation and anti-pathogen response of human gingival keratinocytes. Previously, we demonstrated that A. actinomycetemcomitans biofilms bind IL-1β; however, whether this binding is an active process is not known. In this study, we showed for the first time with immuno-electron microscopy that viable bacterial biofilm cells internalised IL-1β when co-cultured with an organotypic mucosa. Decreased biofilm viability hindered the ability of biofilm to sequester IL-1β and caused IL-1β leakage into the culture medium. In some A. actinomycetemcomitans cells, intracellular IL-1β localized to the outer edges of the nucleoids. We identified the DNA-binding protein HU as an IL-1β interacting protein with mass spectroscopy and showed the interaction of recombinant HU and IL-1βin vitro using enzyme-linked immunosorbent assay (ELISA). Close contact with a viable A. actinomycetemcomitans biofilm decreased the proliferation and apoptosis of human gingival keratinocytes as demonstrated using Ki-67 and the terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) staining, respectively. Our results suggest that viable A. actinomycetemcomitans biofilms may disturb the critical first steps of local inflammation in periodontitis by binding and internalising IL-1β. The interaction of IL-1β with conserved HU provides a potential mechanism for shaping bacterial gene expression.


Journal of Biological Chemistry | 2014

Cystathionine β-Synthase (CBS) Domains Confer Multiple Forms of Mg2+-dependent Cooperativity to Family II Pyrophosphatases

Anu Salminen; Viktor A. Anashkin; Matti Lahti; Heidi Tuominen; Reijo Lahti; Alexander A. Baykov

Background: Enzymes and transporters may contain regulatory nucleotide-binding cystathionine β-synthase domains. Results: Both substrate and adenine nucleotides bind cooperatively to four bacterial cystathionine β-synthase domain-containing pyrophosphatases. Conclusion: Cystathionine β-synthase domains internally inhibit catalysis and impart cooperativity; both effects are modulated by bound nucleotides. Significance: The observed regulatory complexity may be characteristic of cystathionine β-synthase domain-containing proteins involved in hereditary diseases. Regulated family II pyrophosphatases (CBS-PPases) contain a nucleotide-binding insert comprising a pair of cystathionine β-synthase (CBS) domains, termed a Bateman module. By binding with high affinity to the CBS domains, AMP and ADP usually inhibit the enzyme, whereas ATP activates it. Here, we demonstrate that AMP, ADP, and ATP bind in a positively cooperative manner to CBS-PPases from four bacteria: Desulfitobacterium hafniense, Clostridium novyi, Clostridium perfringens, and Eggerthella lenta. Enzyme interaction with substrate as characterized by the Michaelis constant (Km) also exhibited positive catalytic cooperativity that decreased in magnitude upon nucleotide binding. The degree of both types of cooperativity increased with increasing concentration of the cofactor Mg2+ except for the C. novyi PPase where Mg2+ produced the opposite effect on kinetic cooperativity. Further exceptions from these general rules were ADP binding to C. novyi PPase and AMP binding to E. lenta PPase, neither of which had any effect on activity. A genetically engineered deletion variant of D. hafniense PPase lacking the regulatory insert was fully active but differed from the wild-type enzyme in that it was insensitive to nucleotides and bound substrate non-cooperatively and with a smaller Km value. These results indicate that the regulatory insert acts as an internal inhibitor and confers dual positive cooperativity to CBS domain-containing PPases, making them highly sensitive regulators of the PPi level in response to the changes in cell energy status that control adenine nucleotide distribution. These regulatory features may be common among other CBS domain-containing proteins.


Virulence | 2017

A novel intrinsically disordered outer membrane lipoprotein of Aggregatibacter actinomycetemcomitans binds various cytokines and plays a role in biofilm response to interleukin-1β and interleukin-8

Tuuli Ahlstrand; Heidi Tuominen; Arzu Beklen; Annamari Torittu; Jan Oscarsson; Raija Sormunen; Marja T. Pöllänen; Perttu Permi; Riikka Ihalin

ABSTRACT Intrinsically disordered proteins (IDPs) do not have a well-defined and stable 3-dimensional fold. Some IDPs can function as either transient or permanent binders of other proteins and may interact with an array of ligands by adopting different conformations. A novel outer membrane lipoprotein, bacterial interleukin receptor I (BilRI) of the opportunistic oral pathogen Aggregatibacter actinomycetemcomitans binds a key gatekeeper proinflammatory cytokine interleukin (IL)-1β. Because the amino acid sequence of the novel lipoprotein resembles that of fibrinogen binder A of Haemophilus ducreyi, BilRI could have the potential to bind other proteins, such as host matrix proteins. However, from the tested host matrix proteins, BilRI interacted with neither collagen nor fibrinogen. Instead, the recombinant non-lipidated BilRI, which was intrinsically disordered, bound various pro/anti-inflammatory cytokines, such as IL-8, tumor necrosis factor (TNF)-α, interferon (IFN)-γ and IL-10. Moreover, BilRI played a role in the in vitro sensing of IL-1β and IL-8 because low concentrations of cytokines did not decrease the amount of extracellular DNA in the matrix of bilRI− mutant biofilm as they did in the matrix of wild-type biofilm when the biofilms were exposed to recombinant cytokines for 22 hours. BilRI played a role in the internalization of IL-1β in the gingival model system but did not affect either IL-8 or IL-6 uptake. However, bilRI deletion did not entirely prevent IL-1β internalization, and the binding of cytokines to BilRI was relatively weak. Thus, BilRI might sequester cytokines on the surface of A. actinomycetemcomitans to facilitate the internalization process in low local cytokine concentrations.


Journal of Biological Chemistry | 2015

Cystathionine β-Synthase (CBS) Domain-containing Pyrophosphatase as a Target for Diadenosine Polyphosphates in Bacteria

Viktor A. Anashkin; Anu Salminen; Heidi Tuominen; Victor N. Orlov; Reijo Lahti; Alexander A. Baykov

Background: Many soluble pyrophosphatases contain two regulatory nucleotide-binding CBS domains with or without an intercalating DRTGG domain. Results: Linear P1,Pn-diadenosine 5′-polyphosphates (ApnAs, n = 3–6) bind with nanomolar affinity to and activate DRTGG domain-containing pyrophosphatases; Ap3A binds cooperatively. Conclusion: Nucleotide-regulated pyrophosphatases may represent receptors for ApnAs in bacteria. Significance: The results suggest a novel regulatory pathway in some bacteria, involving ApnAs as messengers. Among numerous proteins containing pairs of regulatory cystathionine β-synthase (CBS) domains, family II pyrophosphatases (CBS-PPases) are unique in that they generally contain an additional DRTGG domain between the CBS domains. Adenine nucleotides bind to the CBS domains in CBS-PPases in a positively cooperative manner, resulting in enzyme inhibition (AMP or ADP) or activation (ATP). Here we show that linear P1,Pn-diadenosine 5′-polyphosphates (ApnAs, where n is the number of phosphate residues) bind with nanomolar affinity to DRTGG domain-containing CBS-PPases of Desulfitobacterium hafniense, Clostridium novyi, and Clostridium perfringens and increase their activity up to 30-, 5-, and 7-fold, respectively. Ap4A, Ap5A, and Ap6A bound noncooperatively and with similarly high affinities to CBS-PPases, whereas Ap3A bound in a positively cooperative manner and with lower affinity, like mononucleotides. All ApnAs abolished kinetic cooperativity (non-Michaelian behavior) of CBS-PPases. The enthalpy change and binding stoichiometry, as determined by isothermal calorimetry, were ∼10 kcal/mol nucleotide and 1 mol/mol enzyme dimer for Ap4A and Ap5A but 5.5 kcal/mol and 2 mol/mol for Ap3A, AMP, ADP, and ATP, suggesting different binding modes for the two nucleotide groups. In contrast, Eggerthella lenta and Moorella thermoacetica CBS-PPases, which contain no DRTGG domain, were not affected by ApnAs and showed no enthalpy change, indicating the importance of the DTRGG domain for ApnA binding. These findings suggest that ApnAs can control CBS-PPase activity and hence affect pyrophosphate level and biosynthetic activity in bacteria.


Scientific Reports | 2018

HPV infection and bacterial microbiota in the placenta, uterine cervix and oral mucosa

Heidi Tuominen; Samuli Rautava; Stina Syrjänen; Maria Carmen Collado; Jaana Rautava

We investigated the association between HPV infection and bacterial microbiota composition in the placenta, uterine cervix and mouth in thirty-nine women. HPV DNA genotyping of 24 types was conducted using Multimetrix®. Microbiota composition was characterized by 16S rRNA gene sequencing. HPV DNA was detected in 33% of placenta, 23% cervical and 33% oral samples. HPV16 was the most frequent type in all regions. HPV infection was associated with higher microbiota richness (p = 0.032) in the mouth but did not influence microbial diversity or richness in other samples. HPV infection was associated with higher abundance of Lactobacillaceae (p = 0.0036) and Ureaplasma (LDA score > 4.0, p < 0.05) in the placenta, Haemophilus (p = 0.00058) and Peptostreptococcus (p = 0.0069) genus in the cervix and Selenomonas spp. (p = 0.0032) in the mouth compared to HPV negative samples. These data suggest altered bacterial microbiota composition in HPV positive placenta, cervix and mouth. Whether the changes in bacterial microbiota predispose or result from HPV remains to be determined in future studies.


Acta Crystallographica Section A | 2013

Structural studies on CBS-pyrophosphatase with adenylate ligands

Heidi Tuominen; Anu Salminen; Alexander A. Baykov; Reijo Lahti

In biosynthetic reactions formed pyrophosphate re-enters the metabolic cycle after hydrolysis to orthophosphate by inorganic pyrophosphatase (PPase, EC 3.6.1.1). The enzyme exists in two non-homologous forms; integral membranebound and soluble, that is further divided into two non-homologous families, I and II, with distinct tertiary structures. Common family II PPases are homodimers of two-domain subunits. A quarter of family II PPases contain a large regulatory insert within catalytic domain containing pair of CBS domains and a DRTGG domain, called CBSPPase. CBS domain pairs are present in several protein families and function as a regulatory domain by binding adenylate nucleotides. We have shown that several CBS-PPases are regulated with adenylate nucleotides. For instance a CBSPPase from Moorella thermoacetica is strongly inhibited by AMP and ADP, and activated by ATP, and from Clostridium perfringens is inhibited by AMP and activated by a novel effector, diadenosine 5 ́,5-P1,P4-tetraphosphate (AP4A). This five flexible domain containing protein is challensing to stabilise for ordered crystalline form. Several ligands are know, but correct combination is difficult to find due to similarity and solubility problems. Several structures of continuously working family II PPase are solved in different orientations. We have solved X-ray structures of regulatory part of C. perfringens CBS-PPase with inhibitory and activatory ligands [1]. This was first structure pair where it can be seen conformational change in CBS domain pair due to opposite effectors. [1] Tuominen, H., Salminen, A., Oksanen, E., Jämsen, J., Heikkilä, O., Lehtiö, L., Magretova, N. N., Goldman, A., Baykov, A. A. & Lahti, R. 2010: Crystal structures of the CBS and DRTGG domains of the regulatory region of Clostridium perfringens pyrophosphatase complexed with the inhibitor, AMP, and activator, diadenosine tetraphosphate. J. Mol. Biol., 398(3): 400-413.

Collaboration


Dive into the Heidi Tuominen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge