Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heidrun Gevensleben is active.

Publication


Featured researches published by Heidrun Gevensleben.


Journal of Hepatology | 2013

Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion

Bastian Höchst; Frank A. Schildberg; Pia Sauerborn; Yvonne A. Gäbel; Heidrun Gevensleben; Diane Goltz; Lukas C. Heukamp; Andreas Türler; Matthias Ballmaier; Friederike Gieseke; Ingo Müller; Jörg C. Kalff; Christian Kurts; Percy A. Knolle; Linda Diehl

BACKGROUND & AIMS Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of cells associated with the suppression of immunity. However, little is known about how or where MDSCs are induced and from which cells they originate. The liver is known for its immune regulatory functions. Here, we investigated the capacity of human hepatic stellate cells (HSCs) to transform peripheral blood monocytes into MDSCs. METHODS We cultured freshly isolated human monocytes from healthy donors on primary human HSCs or an HSC cell-line and characterized the phenotype and function of resulting CD14(+)HLA-DR(-/low) monocytes by flow cytometry, quantitative PCR, and functional assays. We analyzed the molecular mechanisms underlying the induction and function of the CD14(+)HLA-DR(-/low) cells by using blocking antibodies or knock-down technology. RESULTS Mature peripheral blood monocytes co-cultured with HSCs downregulated HLA-DR and developed a phenotypic and functional profile similar to MDSCs. Only activated but not freshly isolated HSCs were capable of inducing CD14(+)HLA-DR(-/low) cells. Such CD14(+)HLA-DR(-/low) monocyte-derived MDSCs suppressed T-cell proliferation in an arginase-1 dependent fashion. HSC-induced development of CD14(+)HLA-DR(-/low) monocyte-derived MDSCs was not mediated by soluble factors, but required physical interaction and was abrogated by blocking CD44. CONCLUSIONS Our study shows that activated human HSCs convert mature peripheral blood monocytes into MDSCs. As HSCs are activated during chronic inflammation, the subsequent local induction of MDSCs may prevent ensuing excessive liver injury. HSC-induced MDSCs functionally and phenotypically resemble those isolated from liver cancer patients. Thus, our data suggest that local generation of MDSCs by liver-resident HSCs may contribute to immune suppression during inflammation and cancer in the liver.


Oncotarget | 2016

PITX2 and PANCR DNA methylation predicts overall survival in patients with head and neck squamous cell carcinoma

Verena Sailer; Emily Eva Holmes; Heidrun Gevensleben; Diane Goltz; Freya Dröge; Luka de Vos; Alina Franzen; Friederike Schröck; Friedrich Bootz; Glen Kristiansen; Andreas Schröck; Dimo Dietrich

Background Squamous cell carcinoma of the head and neck region (HNSCC) is a common malignant disease accompanied by a high risk of local or distant recurrence after curative-intent treatment. Biomarkers that allow for the prediction of disease outcome can guide clinicians with respect to treatment and surveillance strategies. Here, the methylation status of PITX2 and an adjacent lncRNA (PANCR) were evaluated for their ability to predict overall survival in HNSCC patients. Results PITX2 hypermethylation was associated with a better overall survival (hazard ratio, HR = 0.51, 95%CI: 0.35-0.74, p<0.001), while PANCR hypermethylation was significantly associated with an increased risk of death (HR = 1.64, 95%CI: 1.12-2.39, p=0.010). Methods Quantitative, methylation-specific real-time PCR assays for PITX2 and PANCR were employed to measure bisulfite-converted DNA from formalin-fixed, paraffin-embedded (FFPE) tissues in a cohort of 399 patients with localized or locally advanced HNSCC who received curative-intent treatment (surgery with optional adjuvant radiochemotherapy or definite radiochemotherapy). Conclusions PITX2 and PANCR methylation status were shown to be independent predictors for overall survival in HNSCC patients. Tissue-based methylation testing could therefore potentially be employed to identify patients with a high risk for death who might benefit from a more radical or alternative treatment.


PLOS ONE | 2017

Clinical performance validation of PITX2 DNA methylation as prognostic biomarker in patients with head and neck squamous cell carcinoma

Verena Sailer; Heidrun Gevensleben; Joern Dietrich; Diane Goltz; Glen Kristiansen; Friedrich Bootz; Dimo Dietrich

Background Despite advances in combined modality therapy, outcomes in head and neck squamous cell cancer (HNSCC) remain dismal with five-year overall survival rates of less than 50%. Prognostic biomarkers are urgently needed to identify patients with a high risk of death after initial curative treatment. Methylation status of the paired-like homeodomain transcription factor 2 (PITX2) has recently emerged as a powerful prognostic biomarker in various cancers. In the present study, the clinical performance of PITX2 methylation was validated in a HNSCC cohort by means of an independent analytical platform (Infinium HumanMethylation450 BeadChip, Illumina, Inc.). Methods A total of 528 HNSCC patients from The Cancer Genome Atlas (TCGA) were included in the study. Death was defined as primary endpoint. PITX2 methylation was correlated with overall survival and clinicopathological parameters. Results PITX2 methylation was significantly associated with sex, tumor site, p16 status, and grade. In univariate Cox proportional hazards analysis, PITX2 hypermethylation analyzed as continuous and dichotomized variable was significantly associated with prolonged overall survival of HNSCC patients (continuous: hazard ratio (HR) = 0.19 [95%CI: 0.04–0.88], p = 0.034; dichotomized: HR = 0.52 [95%CI: 0.33–0.84], p = 0.007). In multivariate Cox analysis including established clinicopathological parameters, PITX2 promoter methylation was confirmed as prognostic factor (HR = 0.28 [95%CI: 0.09–0.84], p = 0.023). Conclusion Using an independent analytical platform, PITX2 methylation was validated as a prognostic biomarker in HNSCC patients, identifying patients that potentially benefit from intensified surveillance and/or administration of adjuvant/neodjuvant treatment, i.e. immunotherapy.


Oncotarget | 2017

PDCD1 ( PD-1 ) promoter methylation predicts outcome in head and neck squamous cell carcinoma patients

Diane Goltz; Heidrun Gevensleben; Joern Dietrich; Friederike Schroeck; Luka de Vos; Freya Droege; Glen Kristiansen; Andreas Schroeck; Jennifer Landsberg; Friedrich Bootz; Dimo Dietrich

Background Biomarkers that facilitate the prediction of disease recurrence in head and neck squamous cell carcinoma (HNSCC) may enable physicians to personalize treatment. In the current study, DNA promoter methylation of programmed cell death 1 (PDCD1, PD-1) was evaluated as a prognostic biomarker in HNSCC patients. Results High PDCD1 methylation (mPDCD1) was associated with a significantly shorter overall survival after surgical resection in both the discovery (HR = 2.24 [95%CI: 1.08–4.64], p = 0.029) and the validation cohort (HR = 1.54 [95%CI: 1.08–2.21], p = 0.017). In multivariate Cox proportional hazards analysis, PDCD1 methylation remained a significant prognostic factor for HNSCC (HR = 2.14 [95%CI: 1.19–3.84], p = 0.011). Further, mPDCD1 was strongly associated with the human papilloma virus (HPV) status. Materials and Methods mPDCD1 was assessed retrospectively in a discovery cohort of 120 HNSCC patients treated at the University Hospital of Bonn and a validation cohort of 527 HNSCC cases analyzed by The Cancer Genome Atlas Research Network. Conclusions PDCD1 methylation might aid the identification of HNSCC patients potentially benefitting from a radical or alternative treatment, particularly in the context of immunotherapies targeting PD-1/PD-L1.


PLOS ONE | 2016

DNA Methylation of PITX2 and PANCR Is Prognostic for Overall Survival in Patients with Resected Adenocarcinomas of the Biliary Tract.

Barbara Uhl; Dimo Dietrich; Vittorio Branchi; Alexander Semaan; Pauline Schaefer; Heidrun Gevensleben; Babak Rostamzadeh; Philipp Lingohr; Nico Schäfer; Jörg C. Kalff; Glen Kristiansen; Hanno Matthaei

Biliary tract cancers (BTC) are rare but highly aggressive malignant epithelial tumors. In order to improve the outcome in this lethal disease, novel biomarkers for diagnosis, prognosis, and therapy response prediction are urgently needed. DNA promoter methylation of PITX2 variants (PITX2ab, PITX2c) and intragenic methylation of the PITX2 adjacent non-coding RNA (PANCR) were investigated by methylations-specific qPCR assays in formalin-fixed paraffin-embedded tissue from 80 patients after resection for BTC. Results were correlated with clinicopathologic data and outcome. PITX2 variants and PANCR showed significant hypermethylation in tumor vs. normal adjacent tissue (p < 0.001 and p = 0.015), respectively. In survival analysis, dichotomized DNA methylation of variant PITX2c and PANCR were significantly associated with overall survival (OS). Patients with high tumor methylation levels of PITX2c had a shorter OS compared to patients with low methylation (12 vs. 40 months OS; HR 2.48 [1.38–4.48], p = 0.002). In contrast, PANCR hypermethylation was associated with prolonged survival (25 vs. 19 months OS; HR 0.54 [0.30–0.94], p = 0.015) and qualified as an independent prognostic factor on multivariate analysis. The biomarkers investigated in this study may help to identify BTC subpopulations at risk for worse survival. Further studies are needed to evaluate if PITX2 might be a clinically useful biomarker for an optimized and individualized treatment.


Oncotarget | 2016

CXCL12 promoter methylation and PD-L1 expression as prognostic biomarkers in prostate cancer patients.

Diane Goltz; Emily Eva Holmes; Heidrun Gevensleben; Verena Sailer; Jörn Dietrich; Maria Jung; Magda Röhler; Sebastian Meller; Jörg Ellinger; Glen Kristiansen; Dimo Dietrich

Background The CXCR4/CXCL12 axis plays a central role in systemic metastasis of prostate carcinoma (PCa), thereby representing a promising target for future therapies. Recent data suggest that the CXCR4/CXCL12 axis is functionally linked to the PD-1/PD-L1 immune checkpoint. We evaluated the prognostic value of aberrant CXCL12 DNA methylation with respect to PD-L1 expression in primary PCa. Results CXCL12 methylation showed a consistent significant correlation with Gleason grading groups in both cohorts (p < 0.001 for training and p = 0.034 for testing cohort). Short BCR-free survival was significantly associated with aberrant CXCL12 methylation in both cohorts and served as an independent prognostic factor in the testing cohort (hazard ratio = 1.92 [95%CI: 1.12–3.27], p = 0.049). Concomitant aberrant CXCL12 methylation and high PD-L1 expression was significantly associated with shorter BCR-free survival (p = 0.005). In comparative analysis, the CXCL12 methylation assay was able to provide approximately equivalent results in biopsy and prostatectomy specimens. Materials and Methods CXCL12 methylation was determined by means of a methylation specific quantitative PCR analysis in a radical prostatectomy patient cohort (n = 247, training cohort). Data published by The Cancer Genome Atlas served as a testing cohort (n = 498). CXCL12 methylation results were correlated to clinicopathological parameters including biochemical recurrence (BCR)-free survival. Conclusions CXCL12 methylation is a powerful prognostic biomarker for BCR in PCa patients after radical prostatectomy. Further studies need to ascertain if CXCL12 methylation may aid in planning active surveillance strategies.


OncoImmunology | 2017

Targeting myeloid derived suppressor cells with all-trans retinoic acid is highly time-dependent in therapeutic tumor vaccination

Annkristin Heine; Chrystel Flores; Heidrun Gevensleben; Linda Diehl; Mathias Heikenwalder; Marc Ringelhan; Klaus-Peter Janssen; Ulrich Nitsche; Natalio Garbi; Peter Brossart; Percy A. Knolle; Christian Kurts; Bastian Höchst

ABSTRACT Tumor immune escape is a critical problem which frequently accounts for the failure of therapeutic tumor vaccines. Among the most potent suppressors of tumor immunity are myeloid derived suppressor cells (MDSCs). MDSCs can be targeted by all-trans-retinoic-acid (atRA), which reduced their numbers and increased response rates in several vaccination studies. However, not much is known about the optimal administration interval between atRA and the vaccine as well as about its mode of action. Here we demonstrate in 2 different murine tumor models that mice unresponsive to a therapeutic vaccine harbored higher MDSC numbers than did responders. Application of atRA overcame MDSC-mediated immunosuppression and restored tumor control. Importantly, atRA was protective only when administered 3 d after vaccination (delayed treatment), whereas simultaneous administration even decreased the anti-tumor immune response and reduced survival. When analyzing the underlying mechanisms, we found that delayed, but not simultaneous atRA treatment with vaccination abrogated the suppressive capacity in monocytic MDSCs and instead caused them to upregulate MHC-class-II. Consistently, MDSCs from patients with colorectal carcinoma also failed to upregulate HLA-DR after ex vivo treatment with TLR-ligation. Overall, we demonstrate that atRA can convert non-responders to responders to vaccination by suppressing MDSCs function and not only by reducing their number. Moreover, we identify a novel, strictly time-dependent mode of action of atRA to be considered during immunotherapeutic protocols in the future.


Life Sciences | 2016

Loss of the LIM-only protein Fhl2 impairs inflammatory reaction and scar formation after cardiac ischemia leading to better hemodynamic performance.

Diane Goltz; Heidrun Gevensleben; Jutta Kirfel; Linda Diehl; Rainer Meyer; Reinhard Büttner

AIMS The pathogenesis of myocardial ischemia-reperfusion injury (MI/R) involves an inflammatory response. Since the four-and-a-half LIM domain-containing protein 2 (Fhl2) has been observed to modulate immune cell migration, we aimed to study the consequences of Fhl2(-/-) under MI/R with respect to immune reaction, scar formation, and hemodynamic performance. MATERIAL AND METHODS In a closed chest model of 1h MI/R, immune cell invasion of phagocytic monocytes was characterized by flow cytometry and immunohistochemistry. In addition, infarct size was assessed by triphenyltetrazolium chloride/Masson trichrome staining 24h/21days after reperfusion and a set of hemodynamic parameters was recorded by catheterisation in Fhl2(-/-) mice and controls. KEY FINDINGS While flow cytometry did not reveal differences in myocardial CD45(high) immune cell infiltrate, histological analysis showed that infiltrating immune cells in Fhl2(-/-) animals were preferentially located in the perivascular area, whereas in wild type, immune cells were well dispersed within the area at risk. After 24h and 21days of reperfusion, infarct size was significantly reduced in Fhl2(-/-) compared to WT animals. In addition, hemodynamic performance was better in Fhl2(-/-) mice, compared to WT mice up to day 21 of reperfusion. The loss of Fhl2 leads to an altered immune response to myocardial ischemia, which results in smaller infarcts and better hemodynamic performance up to 21days after myocardial ischemia reperfusion. SIGNIFICANCE Immune cell invasion plays a pivotal role in the context of MI/R. Fhl2 significantly influences immune cell function and immune cell interaction with injured cardiac tissue leading to altered scar composition.


JCI insight | 2018

CTLA4 methylation predicts response to anti–PD-1 and anti–CTLA-4 immunotherapy in melanoma patients

Diane Goltz; Heidrun Gevensleben; Timo J. Vogt; Joern Dietrich; Carsten Golletz; Friedrich Bootz; Glen Kristiansen; Jennifer Landsberg; Dimo Dietrich

Recent years have witnessed the groundbreaking success of immune checkpoint blockage (ICB) in metastasized malignant melanoma. However, biomarkers predicting the response to ICB are still urgently needed. In the present study, we investigated CTLA4 promoter methylation (mCTLA4) in 470 malignant melanoma patients from The Cancer Genome Atlas (non-ICB cohort) and in 50 individuals with metastasized malignant melanomas under PD-1/CTLA-4-targeted immunotherapy (ICB cohort). mCTLA4 levels were quantified using the Infinium HumanMethylation450 BeadChip (non-ICB cohort) and methylation-specific quantitative real-time PCR in DNA formalin-fixed and paraffin-embedded tissues (ICB cohort). Methylation levels were associated with molecular and clinicopathological variables and analyzed with respect to response (irRECIST) and overall survival. CTLA-4 mRNA and mCTLA4 showed a significant inverse correlation (non-ICB cohort: Spearmans ρ = -0.416, P < 0.001). In ICB-treated melanoma patients, low mCTLA4 was further strongly correlated with response to therapy (P = 0.009, ANOVA) and overall survival (hazard ratio = 2.06 [95% CI: 1.29-3.29], P = 0.003). Our data strongly support the assumption that mCTLA4 predicts response to both anti-PD-1 and anti-CTLA-4 targeted ICB in melanoma and provides paramount information for the selection of patients likely to respond to ICB.


Archives of Gynecology and Obstetrics | 2011

Risk-reducing salpingo-oophorectomy in BRCA1 and BRCA2 mutation carriers

Kerstin Rhiem; Dolores Foth; Barbara Wappenschmidt; Heidrun Gevensleben; Reinhard Büttner; U. Ulrich; Rita K. Schmutzler

Collaboration


Dive into the Heidrun Gevensleben's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dimo Dietrich

University Hospital Bonn

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joern Dietrich

University Hospital Bonn

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Verena Sailer

University Hospital Bonn

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge