Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heike Hausmann is active.

Publication


Featured researches published by Heike Hausmann.


Nature | 2011

Overcoming lability of extremely long alkane carbon-carbon bonds through dispersion forces

Peter R. Schreiner; Lesya V. Chernish; Pavel A. Gunchenko; Evgeniya Yu. Tikhonchuk; Heike Hausmann; Michael Serafin; Sabine Schlecht; Jeremy E. P. Dahl; Robert M. K. Carlson; Andrey A. Fokin

Steric effects in chemistry are a consequence of the space required to accommodate the atoms and groups within a molecule, and are often thought to be dominated by repulsive forces arising from overlapping electron densities (Pauli repulsion). An appreciation of attractive interactions such as van der Waals forces (which include London dispersion forces) is necessary to understand chemical bonding and reactivity fully. This is evident from, for example, the strongly debated origin of the higher stability of branched alkanes relative to linear alkanes and the possibility of constructing hydrocarbons with extraordinarily long C–C single bonds through steric crowding. Although empirical bond distance/bond strength relationships have been established for C–C bonds (longer C–C bonds have smaller bond dissociation energies), these have no present theoretical basis. Nevertheless, these empirical considerations are fundamental to structural and energetic evaluations in chemistry, as summarized by Pauling as early as 1960 and confirmed more recently. Here we report the preparation of hydrocarbons with extremely long C–C bonds (up to 1.704 Å), the longest such bonds observed so far in alkanes. The prepared compounds are unexpectedly stable—noticeable decomposition occurs only above 200 °C. We prepared the alkanes by coupling nanometre-sized, diamond-like, highly rigid structures known as diamondoids. The extraordinary stability of the coupling products is due to overall attractive dispersion interactions between the intramolecular H•••H contact surfaces, as is evident from density functional theory computations with and without inclusion of dispersion corrections.


Journal of the American Chemical Society | 2012

Stable Alkanes Containing Very Long Carbon–Carbon Bonds

Andrey A. Fokin; Lesya V. Chernish; Pavel A. Gunchenko; Evgeniya Yu. Tikhonchuk; Heike Hausmann; Michael Serafin; Jeremy E. Dahl; Robert M. Carlson; Peter R. Schreiner

The metal-induced coupling of tertiary diamondoid bromides gave highly sterically congested hydrocarbon (hetero)dimers with exceptionally long central C-C bonds of up to 1.71 Å in 2-(1-diamantyl)[121]tetramantane. Yet, these dimers are thermally very stable even at temperatures above 200 °C, which is not in line with common C-C bond length versus bond strengths correlations. We suggest that the extraordinary stabilization arises from numerous intramolecular van der Waals attractions between the neighboring H-terminated diamond-like surfaces. The C-C bond rotational dynamics of 1-(1-adamantyl)diamantane, 1-(1-diamantyl)diamantane, 2-(1-adamantyl)triamantane, 2-(1-diamantyl)triamantane, and 2-(1-diamantyl)[121]tetramantane were studied through variable-temperature (1)H- and (13)C NMR spectroscopies. The shapes of the inward (endo) CH surfaces determine the dynamic behavior, changing the central C-C bond rotation barriers from 7 to 33 kcal mol(-1). We probe the ability of popular density functional theory (DFT) approaches (including BLYP, B3LYP, B98, B3LYP-Dn, B97D, B3PW91, BHandHLYP, B3P86, PBE1PBE, wB97XD, and M06-2X) with 6-31G(d,p) and cc-pVDZ basis sets to describe such an unusual bonding situation. Only functionals accounting for dispersion are able to reproduce the experimental geometries, while most DFT functionals are able to reproduce the experimental rotational barriers due to error cancellations. Computations on larger diamondoids reveal that the interplay between the shapes and the sizes of the CH surfaces may even allow the preparation of open-shell alkyl radical dimers (and possibly polymers) that are strongly held together exclusively by dispersion forces.


Journal of Organic Chemistry | 2011

Cooperative Thiourea–Brønsted Acid Organocatalysis: Enantioselective Cyanosilylation of Aldehydes with TMSCN

Zhiguo Zhang; K. M. Lippert; Heike Hausmann; Mike Kotke; Peter R. Schreiner

We report a new thiourea-Brønsted acid cooperative catalytic system for the enantioselective cyanosilylation of aldehydes with yields up to 90% and enantioselectivities up to 88%. The addition of an achiral acid was found to be crucial for high asymmetric induction. Mechanistic investigations using a combination of NMR, ESI-MS, and density functional theory computations (including solvent corrections) at the M06/6-31G(d,p) level of theory suggest that the key catalytic species results from the cooperative interaction of bifunctional thioureas and an achiral acid that form well-defined chiral hydrogen-bonding environments.


Chemistry: A European Journal | 2009

Structural Analyses of N‐Acetylated 4‐(Dimethylamino)pyridine (DMAP) Salts

Volker Lutz; Jörg Glatthaar; Christian Würtele; Michael Serafin; Heike Hausmann; Peter R. Schreiner

We have studied the formation of several N-acetyl-4-(dimethylamino)pyridine (DMAP) salts (with Cl(-), CH(3)COO(-), and CF(3)COO(-) counterions), which are considered to be the catalytically active species in DMAP-catalyzed acetylation reactions of alcohols. Combined crystal structure analyses, variable temperature matrix IR and NMR spectroscopy as well as computational techniques at the UAHF-PCM-B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level were utilized to examine the structures and dynamics of salt formation. We found clear evidence for the formation of tight ion pairs that are stabilized by dynamic hydrogen-bonding interactions. In nonpolar solvents, the nucleophilicity of acetate in its N-acetyl-DMAP salt only allows a steady-state concentration smaller 1% at room temperature. Thus, we propose additional hydrogen-bonding interactions with alcohols to be the key stabilization factor in subsequent acetylations.


Journal of the American Chemical Society | 2015

Aromaticity as Stabilizing Element in the Bidentate Activation for the Catalytic Reduction of Carbon Dioxide

Zhenpin Lu; Heike Hausmann; Sabine Becker; Hermann A. Wegner

A new transition-metal-free mode for the catalytic reduction of carbon dioxide via bidentate interaction has been developed. In the presence of Li2[1,2-C6H4(BH3)2], CO2 can be selectively transformed to either methane or methanol, depending on the reducing agent. The bidentate nature of binding is supported by X-ray analysis of an intermediate analogue, which experiences special stabilization due to aromatic character in the bidentate interaction. Kinetic studies revealed a first-order reaction rate. The transformation can be conducted without any solvent.


Angewandte Chemie | 2015

Metal-Free Ammonia–Borane Dehydrogenation Catalyzed by a Bis(borane) Lewis Acid

Zhenpin Lu; Luca Schweighauser; Heike Hausmann; Hermann A. Wegner

The storage of energy in a safe and environmentally benign way is one of the main challenges of todays society. Ammonia-borane (AB=NH3 BH3 ) has been proposed as a possible candidate for the chemical storage of hydrogen. However, the efficient release of hydrogen is still an active field of research. Herein, we present a metal-free bis(borane) Lewis acid catalyst that promotes the evolution of up to 2.5 equivalents of H2 per AB molecule. The catalyst can be reused multiple times without loss of activity. The moderate temperature of 60 °C allows for controlling the supply of H2 on demand simply by heating and cooling. Mechanistic studies give preliminary insights into the kinetics and mechanism of the catalytic reaction.


Journal of Organic Chemistry | 2008

Monoprotection of Diols as a Key Step for the Selective Synthesis of Unequally Disubstituted Diamondoids (Nanodiamonds)

Hartmut Schwertfeger; Christian Würtele; Michael Serafin; Heike Hausmann; Robert M. Carlson; Jeremy E. Dahl; Peter R. Schreiner

The monoprotection (desymmetrization) of diamondoid, benzylic, and ethynyl diols has been achieved using fluorinated alcohols such as 2,2,2-trifluoroethanol (TFE) under acidic conditions. This practical acid-catalyzed S(N)1 reaction opens the door for the synthesis of novel bifunctional diamondoids. With diamantane as an example, we show that the resulting monoethers can be used to prepare selectively, for instance, amino or nitro alcohols and unnatural amino acids. These are important compounds in terms of the exploration of electronic, pharmacological, and material properties of functionalized nanodiamonds.


Chemistry: A European Journal | 2009

Reactivities of the Prism‐Shaped Diamondoids [1(2)3]Tetramantane and [12312]Hexamantane (Cyclohexamantane)

Andrey A. Fokin; Boryslav A. Tkachenko; Natalie A. Fokina; Heike Hausmann; Michael Serafin; Jeremy E. Dahl; Robert M. K. Carlson; Peter R. Schreiner

Various functional groups have been incorporated into the structures of the naturally occurring diamondoids [1(2)3]tetramantane and [12312]hexamantane (cyclohexamantane), which represent hydrogen-terminated prism-shaped nanodiamonds. The selectivities of the C-H substitutions in [1(2)3]tetramantane depend on the reagent employed and give products substituted at either central (through bromination) or peripheral (through nitroxylation and photo-oxidation) positions. The hydrogen-coupled electron-transfer mechanism of C-H nitroxylation with the model electrophile NO(2)(+)...HNO(3) was verified computationally at the B3PW91 and MP2 levels of theory by utilizing the 6-31G(d) and cc-pVDZ basis sets. The thermodynamically controlled nitroxylation/isomerization of [1(2)3]tetramantane allows the preparation of peripherally trisubstituted derivatives, which were transformed into tripod-like nanodiamond building blocks. The bromination of cyclohexamantane selectively gives the 2-bromo derivative, reproducing the chemical behavior of the {111} surface of the hydrogen-terminated diamond.


Chemistry: A European Journal | 2012

Two‐Dimensional Infrared Spectroscopy Reveals the Structure of an Evans Auxiliary Derivative and Its SnCl4 Lewis Acid Complex

Andreas T. Messmer; K. M. Lippert; Sabrina Steinwand; Eliza‐Beth W. Lerch; Kira Hof; David Ley; Dennis Gerbig; Heike Hausmann; Peter R. Schreiner; Jens Bredenbeck

Determining the structure of reactive intermediates is the key to understanding reaction mechanisms. To access these structures, a method combining structural sensitivity and high time resolution is required. Here ultrafast polarization-dependent two-dimensional infrared (P2D-IR) spectroscopy is shown to be an excellent complement to commonly used methods such as one-dimensional IR and multidimensional NMR spectroscopy for investigating intermediates. P2D-IR spectroscopy allows structure determination by measuring the angles between vibrational transition dipole moments. The high time resolution makes P2D-IR spectroscopy an attractive method for structure determination in the presence of fast exchange and for short-lived intermediates. The ubiquity of vibrations in molecules ensures broad applicability of the method, particularly in cases in which NMR spectroscopy is challenging due to a low density of active nuclei. Here we illustrate the strengths of P2D-IR by determining the conformation of a Diels-Alder dienophile that carries the Evans auxiliary and its conformational change induced by the complexation with the Lewis acid SnCl(4), which is a catalyst for stereoselective Diels-Alder reactions. We show that P2D-IR in combination with DFT computations can discriminate between the various conformers of the free dienophile N-crotonyloxazolidinone that have been debated before, proving antiperiplanar orientation of the carbonyl groups and s-cis conformation of the crotonyl moiety. P2D-IR unequivocally identifies the coordination and conformation in the catalyst-substrate complex with SnCl(4), even in the presence of exchange that is fast on the NMR time scale. It resolves a chelate with the carbonyl orientation flipped to synperiplanar and s-cis crotonyl configuration as the main species. This work sets the stage for future studies of other catalyst-substrate complexes and intermediates using a combination of P2D-IR spectroscopy and DFT computations.


Angewandte Chemie | 2016

[2](1,3)Adamantano[2](2,7)pyrenophane: A Hydrocarbon with a Large Dipole Moment

Paul Kahl; J. Philipp Wagner; Ciro Balestrieri; Jonathan Becker; Heike Hausmann; Graham J. Bodwell; Peter R. Schreiner

The fusion of the sp(3) -hybridized parent diamondoid adamantane with the sp(2) -hybridized pyrene results in a hybrid structure with a very large dipole moment which arises from bending the pyrene moiety. Presented herein is the synthesis, study of the electronic and optical properties, as well as the dynamic behavior of this new hydrocarbon.

Collaboration


Dive into the Heike Hausmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge