Heike Pohla
Ludwig Maximilian University of Munich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heike Pohla.
Nature Medicine | 2012
Steffen Walter; Toni Weinschenk; A. Stenzl; Romuald Zdrojowy; Anna Pluzanska; Cezary Szczylik; Michael Staehler; Wolfram Brugger; Pierre-Yves Dietrich; Regina Mendrzyk; Norbert Hilf; Oliver Schoor; Jens Fritsche; Andrea Mahr; Dominik Maurer; Verona Vass; Claudia Trautwein; Peter Lewandrowski; Christian Flohr; Heike Pohla; Janusz J. Stanczak; Vincenzo Bronte; Susanna Mandruzzato; Tilo Biedermann; Graham Pawelec; Evelyna Derhovanessian; Hisakazu Yamagishi; Tsuneharu Miki; Fumiya Hongo; N. Takaha
IMA901 is the first therapeutic vaccine for renal cell cancer (RCC) consisting of multiple tumor-associated peptides (TUMAPs) confirmed to be naturally presented in human cancer tissue. We treated a total of 96 human leukocyte antigen A (HLA-A)*02+ subjects with advanced RCC with IMA901 in two consecutive studies. In the phase 1 study, the T cell responses of the patients to multiple TUMAPs were associated with better disease control and lower numbers of prevaccine forkhead box P3 (FOXP3)+ regulatory T (Treg) cells. The randomized phase 2 trial showed that a single dose of cyclophosphamide reduced the number of Treg cells and confirmed that immune responses to multiple TUMAPs were associated with longer overall survival. Furthermore, among six predefined populations of myeloid-derived suppressor cells, two were prognostic for overall survival, and among over 300 serum biomarkers, we identified apolipoprotein A-I (APOA1) and chemokine (C-C motif) ligand 17 (CCL17) as being predictive for both immune response to IMA901 and overall survival. A randomized phase 3 study to determine the clinical benefit of treatment with IMA901 is ongoing.
Nature Medicine | 2001
Christian Becker; Heike Pohla; Bernhard Frankenberger; Thomas Schüler; Mario Assenmacher; Dolores J. Schendel; Thomas Blankenstein
Successful adoptive T-cell therapy has been demonstrated in viral disease and selected forms of cancer. However, it is limited by the difficulty to efficiently isolate and amplify autologous tumor-reactive T-cell clones. Tetramers of major histocompatibility complex (MHC) class I and peptide have facilitated the characterization of CD8+ T cells specific for tumor-associated antigens. However, for adoptive T-cell therapy, MHC-tetramers have limitations: they require knowledge of tumor antigens, which is often not available; they select T cells with a single specificity, thereby posing risk for selection of tumor escape variants; they do not select for function, so that T cells may be anergic when isolated from cancer patients; and they do not allow the isolation of CD4+ T cells that can be essential for tumor rejection. Because interferon (IFN)-γ is essential for tumor rejection, we isolated live T cells based on their IFN-γ production. IFN-γ secreted by previously activated T cells is retained on the cell surface, allowing their specific isolation and expansion. We show here that IFN-γ+ but not IFN-γ− T cells from tumor-immunized mice are cytolytic and mediate tumor rejection upon adoptive transfer. Importantly, tumor-specific T cells can be enriched from lymphocytes infiltrating human renal cell carcinoma by the IFN-γ capture assay.
Journal of Translational Medicine | 2007
Anke Zobywalski; Miran Javorovic; Bernhard Frankenberger; Heike Pohla; Elisabeth Kremmer; Iris Bigalke; Dolores J. Schendel
BackgroundFor optimal T cell activation it is desirable that dendritic cells (DCs) display peptides within MHC molecules as signal 1, costimulatory molecules as signal 2 and, in addition, produce IL-12p70 as signal 3. IL-12p70 polarizes T cell responses towards CD4+ T helper 1 cells, which then support the development of CD8+ cytotoxic T lymphocytes. We therefore developed new maturation cocktails allowing DCs to produce biologically active IL-12p70 for large-scale cancer vaccine development.MethodsAfter elutriation of leukapheresis products in a closed bag system, enriched monocytes were cultured with GM-CSF and IL-4 for six days to generate immature DCs that were then matured with cocktails, containing cytokines, interferon-gamma, prostaglandin E2, and a ligand for Toll-like receptor 8, with or without poly (I:C).ResultsMature DCs expressed appropriate maturation markers and the lymph node homing chemokine receptor, CCR7. They retained full maturity after culture for two days without maturation cocktails and following cryopreservation. TLR ligand stimulation induced DCs capable of secreting IL-12p70 in primary cultures and after one day of coculture with CD40L-expressing fibroblasts, mimicking an encounter with T cells. DCs matured with our new cocktails containing TLR8 ligand, with or without poly (I:C), induced alloresponses and stimulated virus-specific T cells after peptide-pulsing. DCs matured in cocktails containing TLR8 ligand without poly (I:C) could also be loaded with RNA as a source of antigen, whereas DCs matured in cocktails containing poly (I:C) were unable to express proteins following RNA transfer by electroporation.ConclusionOur new maturation cocktails allowed easy DC harvesting, stable maturation and substantial recoveries of mature DCs after cryopreservation. Our procedure for generating DCs is easily adaptable for GMP-compliance and yields IL-12p70-secreting DCs suitable for development of cancer vaccines using peptides or RNA as sources of immunizing antigens.
Journal of Histochemistry and Cytochemistry | 2001
Rainer Riesenberg; Alexander Buchner; Heike Pohla; Horst Lindhofer
Bispecific monoclonal antibodies (bsAbs) are a promising immunotherapeutic option for treatment of cancer, especially in situations of minimal residual disease. The combination of an anti-CD3 and anti-tumor-associated antigen antibody redirects cytotoxic T-lymphocytes towards malignant cells. Using a trifunctional bispecific antibody against Ep-CAM × CD3, that additionally activates FcγR+ accessory cells via its Fc region, we investigated the interaction between three EpCAM+ prostate carcinoma cell lines and peripheral blood mononuclear cells (PBMCs) of healthy donors and patients with prostate carcinoma (PC). Visualization was performed by double immunocytochemical methods and computerized sequential video microscopy. Tumor cells and PBMCs supplemented with αEpCAM × αCD3 in 16-well chamber slides resulted in lysis of tumor cells within 1–3 days without any differences between patient and healthy donor PBMCs. The characteristic necrotic way of tumor cell killing (rounding, swelling, disrupting) could be observed in computerized sequences of video frames. Simultaneously, we could not reveal any form of apoptotic signal using three different apoptotic markers (TUNEL, M30 cyto death, anti-active caspase 3). Within the first 48 hr we observed typical PBMC cluster formation with increasing cell proliferation. PBMCs surrounding the tumor cells were not dominated by CD4+, CD8+, or CD14+ cells. Lymphocytes with pore-forming perforin proteins concentrated towards the tumor target cells. Our combination of double immunocytochemical and computerized video microscopic techniques may serve as an important improvement of validity of cell–cell interaction experiments using in vitro models.
Clinical Cancer Research | 2006
Julia Schleypen; Nicole Baur; Robert Kammerer; Peter J. Nelson; Karl Rohrmann; Elisabeth Gröne; Markus Hohenfellner; Axel Haferkamp; Heike Pohla; Dolores J. Schendel; Christine S. Falk; Elfriede Noessner
Purpose: Renal cell carcinoma harbors high numbers of infiltrating lymphocytes with apparent limited efficacy in tumor control. This study focused on the natural killer (NK) cells infiltrating renal cell carcinoma. Experimental Design: Tumor-infiltrating lymphocytes (TIL) were isolated from renal cell carcinoma and analyzed for NK cell frequency and phenotype (n = 34). NK cells were enriched and tested for effector function. Results: Two renal cell carcinoma subtypes were identified, one containing high (>20% of the lymphocyte population, n = 14), the other low (<20%, n = 20), NK cell numbers. NK cells of both groups were noncytolytic ex vivo but differed in CD16 and cytotoxic effector molecule expression as well as in their capacity to acquire cytotoxic activity: The majority of NK cells from tumors with high NK cell content (high NK-TIL) were CD16bright, whereas few CD16bright NK cells were found in tumors with low NK cell frequencies (low NK-TIL). The CD16 dichotomy correlated with different capacities to develop cytotoxicity after short-term activation with interleukin-2 ex vivo: Low NK-TIL remained noncytolytic against K562 and unresponsive to signals via the activating receptor NKp46 despite expression of receptor and adaptor molecules. In contrast, high NK-TIL acquired cytotoxic function. As described for peripheral CD16bright NK cells, NK cells from high-NK tumors showed high per cell expression of granzyme A, granzyme B, and perforin. NK cells from low NK-TIL resembled CD16neg/dim peripheral NK cells with few cytotoxin+ cells and lower expression of perforin. Conclusion: The extent of NK cell infiltration and the expression of markers (CD16 and cytotoxins) predict the functional capacity of NK cells infiltrating renal cell carcinoma and can be used to characterize subgroups of renal cell carcinoma.
Immunogenetics | 1989
Heike Pohla; Wolfgang Kuon; Piotr Tabaczewski; Christa Doerner; Elisabeth H. Weiss
Several new HLA-B (B8, B51, Bw62)- and HLA-C (Cw6, Cw7)-specific genes were isolated either as genomic cosmid or cDNA clones to study the diversity of HLA antigens. The allele specificities were identified by sequence analysis in comparison with published HLA-B and -C sequences, by transfection experiments, and Southern and northern blot analysis using oligonucleotide probes. Comparison of the classical HLA-A, -B, and -C sequences reveals that allele-specific substitutions seem to be rare events. HLA-B51 codes only for one allelespecific residue: arginine at position 81 located on the α1 helix, pointing toward the antigen binding site. HLA-B8 contains an acidic substitution in amino acid position 9 on the first central β sheet which might affect antigen binding capacity, perhaps in combination with the rare replacement at position 67 (F) on the ul helix. HLA-B8 shows greatest homology to HLA-Bw42, -Bw41, -B7, and-Bw60 antigens, all of which lack the conserved restriction sites Pst I at position 180 and Sac I at position 131. Both sites associated with amino acid replacements seem to be genetic markers of an evolutionary split of the HLA-B alleles, which is also observed in the leader sequences. HLA-Cw7 shows 98% sequence identity to the JY328 gene. In general, the HLA-C alleles display lower levels of variability in the highly polymorphic regions of the α1 and α2 domains, and have more distinct patterns of locus-specific residues in the transmembrane and cytoplasmic domains. Thus we propose a more recent origin for the HLA-C locus.
Blood | 2009
Susanne Wilde; Daniel Sommermeyer; Bernhard Frankenberger; Matthias Schiemann; Slavoljub Milosevic; Stefani Spranger; Heike Pohla; Wolfgang Uckert; Dirk H. Busch; Dolores J. Schendel
Adoptive transfer of T cells expressing transgenic T-cell receptors (TCRs) with antitumor function is a hopeful new therapy for patients with advanced tumors; however, there is a critical bottleneck in identifying high-affinity TCR specificities needed to treat different malignancies. We have developed a strategy using autologous dendritic cells cotransfected with RNA encoding an allogeneic major histocompatibility complex molecule and a tumor-associated antigen to obtain allo-restricted peptide-specific T cells having superior capacity to recognize tumor cells and higher functional avidity. This approach provides maximum flexibility because any major histocompatibility complex molecule and any tumor-associated antigen can be combined in the dendritic cells used for priming of autologous T cells. TCRs of allo-restricted T cells, when expressed as transgenes in activated peripheral blood lymphocytes, transferred superior function compared with self-restricted TCR. This approach allows high-avidity T cells and TCR specific for tumor-associated self-peptides to be easily obtained for direct adoptive T-cell therapy or for isolation of therapeutic transgenic TCR sequences.
International Journal of Cancer | 2003
Julia Schleypen; Marion von Geldern; Elisabeth H. Weiß; Nicole Kotzias; Karl Rohrmann; Dolores J. Schendel; Christine S. Falk; Heike Pohla
Among tumor‐infiltrating lymphocytes (TILs) directly isolated from renal cell carcinomas (RCCs), we found substantial numbers of natural killer (NK) cells in most tumor tissues. They could be identified reliably in situ with an antibody directed against the activating receptor (AR) NKp46 that is exclusively expressed by all NK cells. NK‐enriched TILs (NK‐TILs) showed cytotoxicity against major histocompatibility complex (MHC) class I‐negative cell lines. The ability to detect lysis of target cells was dependent on the percentage of NK cells within the TILs, and cytotoxicity was only observed after overnight activation with low‐dose interleukin‐2 (IL‐2). Infiltrating NK cells were found to express various inhibitory receptors (IRs); among these the CD94/NKG2A receptor complex was overrepresented compared to the autologous peripheral blood mononuclear cell (PBMC) population. Other IRs were underrepresented, indicating that NK subpopulations vary in their tumor‐infiltrating capacity. IRs expressed by NK‐TILs are functional since receptor engagement with MHC class I ligands presented by human leukocyte antigen (HLA)‐transfected target cell lines was able to inhibit NK‐mediated cytotoxicity. NK‐TILs were also able to lyse autologous or allogeneic tumor cell lines in vitro. This activity correlated with low HLA class I surface expression since lysis could be inhibited by interferon (IFN)‐γ‐expressing RCC transductants that displayed a higher surface density of HLA class I molecules. Therefore, NK cells infiltrating tumor tissues have an inherent ability to recognize transformed cells, but they require cytokine activation and are sensitive to inhibition by IR ligands.
Stem Cells | 2013
Maximilian Gassenmaier; Dong Chen; Alexander Buchner; Lynette Henkel; Matthias Schiemann; Brigitte Mack; Dolores J. Schendel; Wolfgang Zimmermann; Heike Pohla
In many solid tumors, cancer stem cells (CSC) represent a population with tumor‐initiating, self‐renewal, and differentiation potential, which can be identified by surface protein markers. No generally applicable markers are yet known for renal cell carcinoma (RCC). Two RCC cell lines (RCC‐26, RCC‐53) were found to differ widely in their capacity to form spheres in vitro and to establish tumors in mice, potentially reflecting differences in CSC content. A subpopulation expressing the CXC chemokine receptor 4 (CXCR4) was present only in the more tumorigenic cell line RCC‐53. When grown as spheres, most of the RCC‐53 cells were CXCR4‐positive, expressed stem cell‐associated transcription factor genes at elevated levels, and were more resistant toward the tyrosine kinase inhibitors sunitinib, sorafenib, and pazopanib. Sorted CXCR4‐positive cells exhibited greater capacity for sphere formation and tumor growth‐inducing potential in vivo than CXCR4‐negative cells. Significantly, higher CXCR4 mRNA levels in primary RCC tumors from patients with localized but not disseminated disease predicted shorter survival. Downregulation of CXCR4 expression by small interfering RNA (siRNA) or pharmacological inhibition by AMD3100 compromised tumor sphere formation, viability of CXCR4‐positive cells, and increased their responsiveness toward tyrosine kinase inhibitors. In conclusion, CXCR4 identifies a subpopulation of tumor‐initiating cells in RCC cell lines and plays a role in their maintenance. The relative insensitivity of such cells to tyrosine kinase inhibitors might contribute to the development of therapy resistance in RCC patients. Future therapies therefore could combine blockade of the CXCR4 signaling pathway with standard therapies for more effective treatments of metastatic RCC. STEM Cells 2013;31:1467–1476
Gene Therapy | 2000
Dolores J. Schendel; Bernhard Frankenberger; P Jantzer; Sophie Cayeux; E Nöβner; Willimsky G; B Maget; Heike Pohla; Thomas Blankenstein
We have selected a well-characterized human renal cell carcinoma (RCC) line as the basis for development of a genetically engineered tumor cell vaccine to be applied in an allogeneic setting. This cell line was genetically modified by retroviral transduction to express B7.1 costimulatory molecules. The unmodified tumor cells and B7.1-expressing tumor cells were compared for their ability to induce tumor-associated responses in allogeneic peripheral blood mononuclear cells (PBMC) of two normal control donors having single MHC class I allele matches with the tumor cells. PBMC primed using B7.1-modified tumor cells showed a preponderance of CD3+CD8+ cytotoxic T lymphocytes (CTL) that proliferated over extended periods of time in mixed lymphocyte tumor cell (MLTC) cultures. Strong cytolytic activity developed in the primed populations and included allospecific CTL with specificity for mismatched HLA-A, -B and -C molecules. Nevertheless, it was possible to isolate CTL clones that were able to lyse tumor cells but not lymphoblastoid cells that expressed all the corresponding allospecificities. Thus, induction of complex allospecific responses did not hinder the development of tumor-associated CTL in vitro. These results support the use of this genetically modified allogeneic tumor cell line for vaccination of partial-MHC matched RCC patients.