Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heike Rampelt is active.

Publication


Featured researches published by Heike Rampelt.


Nature | 2008

Co-option of a default secretory pathway for plant immune responses

Chian Kwon; Christina Neu; Simone Pajonk; Hye Sup Yun; U. Lipka; Matt Humphry; S. Bau; M. Straus; Heike Rampelt; F. El Kasmi; Gerd Jürgens; Jane E. Parker; Ralph Panstruga; Volker Lipka; Paul Schulze-Lefert

Cell-autonomous immunity is widespread in plant–fungus interactions and terminates fungal pathogenesis either at the cell surface or after pathogen entry. Although post-invasive resistance responses typically coincide with a self-contained cell death of plant cells undergoing attack by parasites, these cells survive pre-invasive defence. Mutational analysis in Arabidopsis identified PEN1 syntaxin as one component of two pre-invasive resistance pathways against ascomycete powdery mildew fungi. Here we show that plasma-membrane-resident PEN1 promiscuously forms SDS-resistant soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) complexes together with the SNAP33 adaptor and a subset of vesicle-associated membrane proteins (VAMPs). PEN1-dependent disease resistance acts in vivo mainly through two functionally redundant VAMP72 subfamily members, VAMP721 and VAMP722. Unexpectedly, the same two VAMP proteins also operate redundantly in a default secretory pathway, suggesting dual functions in separate biological processes owing to evolutionary co-option of the default pathway for plant immunity. The disease resistance function of the secretory PEN1–SNAP33–VAMP721/722 complex and the pathogen-induced subcellular dynamics of its components are mechanistically reminiscent of immunological synapse formation in vertebrates, enabling execution of immune responses through focal secretion.


The EMBO Journal | 2012

Metazoan Hsp70 machines use Hsp110 to power protein disaggregation.

Heike Rampelt; Janine Kirstein-Miles; Nadinath B. Nillegoda; Kang Chi; Sebastian R. Scholz; Richard I. Morimoto; Bernd Bukau

Accumulation of aggregation‐prone misfolded proteins disrupts normal cellular function and promotes ageing and disease. Bacteria, fungi and plants counteract this by solubilizing and refolding aggregated proteins via a powerful cytosolic ATP‐dependent bichaperone system, comprising the AAA+ disaggregase Hsp100 and the Hsp70‐Hsp40 system. Metazoa, however, lack Hsp100 disaggregases. We show that instead the Hsp110 member of the Hsp70 superfamily remodels the human Hsp70‐Hsp40 system to efficiently disaggregate and refold aggregates of heat and chemically denatured proteins in vitro and in cell extracts. This Hsp110 effect relies on nucleotide exchange, not on ATPase activity, implying ATP‐driven chaperoning is not required. Knock‐down of nematode Caenorhabditis elegans Hsp110, but not an unrelated nucleotide exchange factor, compromises dissolution of heat‐induced protein aggregates and severely shortens lifespan after heat shock. We conclude that in metazoa, Hsp70‐Hsp40 powered by Hsp110 nucleotide exchange represents the crucial disaggregation machinery that reestablishes protein homeostasis to counteract protein unfolding stress.


Journal of Biological Chemistry | 2008

Hsp110 Is a Nucleotide-activated Exchange Factor for Hsp70

Claes Andréasson; Jocelyne Fiaux; Heike Rampelt; Matthias P. Mayer; Bernd Bukau

Hsp110 proteins constitute a subfamily of the Hsp70 chaperones and are potent nucleotide exchange factors (NEFs) for canonical Hsp70s of the eukaryotic cytosol. Here, we show that the NEF activity of the yeast Hsp110 homologue Sse1 itself is controlled by nucleotide. Nucleotide binding results in formation of a stabilized conformation of Sse1 that is required for association with the yeast Hsp70 Ssa1. The interaction triggers release of bound ADP from Ssa1, but nucleotide persists bound to Sse1 in the complex. Surprisingly, removal of this nucleotide does not affect the integrity of the complex. Instead, rebinding of ATP to the Hsp70 prompts the dissociation of the complex. Our data demonstrate that in contrast to previously characterized NEFs for Hsp70 chaperones, the NEF activity of Sse1 requires nucleotide binding and let us propose a new model for Hsp110 function.


PLOS ONE | 2008

Hsp110 Chaperones Regulate Prion Formation and Propagation in S. cerevisiae by Two Discrete Activities

Heather Sadlish; Heike Rampelt; James Shorter; Renee D. Wegrzyn; Claes Andréasson; Susan Lindquist; Bernd Bukau

The cytosolic chaperone network of Saccharomyces cerevisiae is intimately associated with the emergence and maintenance of prion traits. Recently, the Hsp110 protein, Sse1, has been identified as a nucleotide exchange factor (NEF) for both cytosolic Hsp70 chaperone family members, Ssa1 and Ssb1. We have investigated the role of Sse1 in the de novo formation and propagation of [PSI +], the prion form of the translation termination factor, Sup35. As observed by others, we find that Sse1 is essential for efficient prion propagation. Our results suggest that the NEF activity is required for maintaining sufficient levels of substrate-free Ssa1. However, Sse1 exhibits an additional NEF-independent activity; it stimulates in vitro nucleation of Sup35NM, the prion domain of Sup35. We also observe that high levels of Sse1, but not of an unrelated NEF, very potently inhibit Hsp104-mediated curing of [PSI +]. Taken together, these results suggest a chaperone-like activity of Sse1 that assists in stabilization of early folding intermediates of the Sup35 prion conformation. This activity is not essential for prion formation under conditions of Sup35 overproduction, however, it may be relevant for spontaneous [PSI +] formation as well as for protection of the prion trait upon physiological Hsp104 induction.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Insights into the structural dynamics of the Hsp110-Hsp70 interaction reveal the mechanism for nucleotide exchange activity

Claes Andréasson; Jocelyne Fiaux; Heike Rampelt; Silke Druffel-Augustin; Bernd Bukau

Hsp110 proteins are relatives of canonical Hsp70 chaperones and are expressed abundantly in the eukaryotic cytosol. Recently, it has become clear that Hsp110 proteins are essential nucleotide exchange factors (NEFs) for Hsp70 chaperones. Here, we report the architecture of the complex between the yeast Hsp110, Sse1, and its cognate Hsp70 partner, Ssa1, as revealed by hydrogen–deuterium exchange analysis and site-specific cross-linking. The two nucleotide-binding domains (NBDs) of Sse1 and Ssa1 are positioned to face each other and form extensive contacts between opposite lobes of their NBDs. A second contact with the periphery of the Ssa1 NBD lobe II is likely mediated via the protruding C-terminal α-helical subdomain of Sse1. To address the mechanism of catalyzed nucleotide exchange, we have compared the hydrogen exchange characteristics of the Ssa1 NBD in complex with either Sse1 or the yeast homologs of the NEFs HspBP1 and Bag-1. We find that Sse1 exploits a Bag-1-like mechanism to catalyze nucleotide release, which involves opening of the Ssa1 NBD by tilting lobe II. Thus, Hsp110 proteins use a unique binding mode to catalyze nucleotide release from Hsp70s by a functionally convergent mechanism.


Cell Metabolism | 2015

Central role of mic10 in the mitochondrial contact site and cristae organizing system

Maria Bohnert; Ralf M. Zerbes; Karen M. Davies; Alexander W. Mühleip; Heike Rampelt; Susanne E. Horvath; Thorina Boenke; Anita M. Kram; Inge Perschil; Marten Veenhuis; Werner Kühlbrandt; Ida J. van der Klei; Nikolaus Pfanner; Martin van der Laan

The mitochondrial contact site and cristae organizing system (MICOS) is a conserved multi-subunit complex crucial for maintaining the characteristic architecture of mitochondria. Studies with deletion mutants identified Mic10 and Mic60 as core subunits of MICOS. Mic60 has been studied in detail; however, topogenesis and function of Mic10 are unknown. We report that targeting of Mic10 to the mitochondrial inner membrane requires a positively charged internal loop, but no cleavable presequence. Both transmembrane segments of Mic10 carry a characteristic four-glycine motif, which has been found in the ring-forming rotor subunit of F1Fo-ATP synthases. Overexpression of Mic10 profoundly alters the architecture of the inner membrane independently of other MICOS components. The four-glycine motifs are dispensable for interaction of Mic10 with other MICOS subunits but are crucial for the formation of large Mic10 oligomers. Our studies identify a unique role of Mic10 oligomers in promoting the formation of inner membrane crista junctions.


Protein Science | 2015

Role of membrane contact sites in protein import into mitochondria

Susanne E. Horvath; Heike Rampelt; Silke Oeljeklaus; Bettina Warscheid; Martin van der Laan; Nikolaus Pfanner

Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long‐standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence‐carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.


Journal of Biological Chemistry | 2010

The endoplasmic reticulum Grp170 acts as a nucleotide exchange factor of Hsp70 via a mechanism similar to that of the cytosolic Hsp110.

Claes Andréasson; Heike Rampelt; Jocelyne Fiaux; Silke Druffel-Augustin; Bernd Bukau

Grp170 and Hsp110 proteins constitute two evolutionary distinct branches of the Hsp70 family that share the ability to function as nucleotide exchange factors (NEFs) for canonical Hsp70s. Although the NEF mechanism of the cytoplasmic Hsp110s is well understood, little is known regarding the mechanism used by Grp170s in the endoplasmic reticulum. In this study, we compare the yeast Grp170 Lhs1 with the yeast Hsp110 Sse1. We find that residues important for Sse1 NEF activity are conserved in Lhs1 and that mutations in these residues in Lhs1 compromise NEF activity. As previously reported for Sse1, Lhs1 requires ATP to trigger nucleotide exchange in its cognate Hsp70 partner Kar2. Using site-specific cross-linking, we show that the nucleotide-binding domain (NBD) of Lhs1 interacts with the NBD of Kar2 face to face, and that Lhs1 contacts the side of the Kar2 NBD via its protruding C-terminal α-helical domain. To directly address the mechanism of nucleotide exchange, we have compared the hydrogen-exchange characteristics of a yeast Hsp70 NBD (Ssa1) in complex with either Sse1 or Lhs1. We find that Lhs1 and Sse1 induce very similar changes in the conformational dynamics in the Hsp70. Thus, our findings demonstrate that despite some differences between Hsp110 and Grp170 proteins, they use a similar mechanism to trigger nucleotide exchange.


Biochimica et Biophysica Acta | 2017

Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics

Heike Rampelt; Ralf M. Zerbes; Martin van der Laan; Nikolaus Pfanner

The elaborate membrane architecture of mitochondria is a prerequisite for efficient respiration and ATP generation. The cristae membranes, invaginations of the inner mitochondrial membrane, represent a specialized compartment that harbors the complexes of the respiratory chain and the F1Fo-ATP synthase. Crista junctions form narrow openings that connect the cristae membranes to the inner boundary membrane. The mitochondrial contact site and cristae organizing system (MICOS) is located at crista junctions where it stabilizes membrane curvature and forms contact sites between the mitochondrial inner and outer membranes. MICOS is a large machinery, consisting of two dynamic subcomplexes that are anchored in the inner membrane and expose domains to the intermembrane space. The functions of MICOS in mitochondrial membrane architecture and biogenesis are influenced by numerous interaction partners and the phospholipid environment.


Methods of Molecular Biology | 2011

Nucleotide exchange factors for Hsp70 chaperones.

Heike Rampelt; Matthias P. Mayer; Bernd Bukau

The ATPase cycle of Hsp70 chaperones controls their transient association with substrate and, thus, governs their function in protein folding. Nucleotide exchange factors (NEFs) accelerate ADP release from Hsp70 which results in rebinding of ATP and release of the substrate. This chapter describes several methods suitable to study NEFs of Hsp70 chaperones. On the one hand, steady-state ATPase assays provide information on how the NEF influences progression of the Hsp70 through the entire ATPase cycle. On the other hand, nucleotide release can be measured directly using labeled nucleotides, which enables identification and further characterization of NEFs.

Collaboration


Dive into the Heike Rampelt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernd Bukau

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge